Compact high order finite difference schemes for linear Schrödinger problems on non-uniform meshes

Loading...
Thumbnail Image
Date
2012
Volume
1748
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin: Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

In the present paper a general technique is developed for construction of compact high-order finite difference schemes to approximate Schrödinger problems on nonuniform meshes. Conservation of the finite difference schemes is investigated. Discrete transparent boundary conditions are constructed for the given high-order finite difference scheme. The same technique is applied to construct compact high-order approximations of the Robin and Szeftel type boundary conditions. Results of computational experiments are presented

Description
Keywords
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.