Computational tissue staining of non-linear multimodal imaging using supervised and unsupervised deep learning

dc.bibliographicCitation.firstPage2280eng
dc.bibliographicCitation.issue4eng
dc.bibliographicCitation.journalTitleBiomedical optics expresseng
dc.bibliographicCitation.lastPage2298eng
dc.bibliographicCitation.volume12eng
dc.contributor.authorPradhan, Pranita
dc.contributor.authorMeyer, Tobias
dc.contributor.authorVieth, Michael
dc.contributor.authorStallmach, Andreas
dc.contributor.authorWaldner, Maximilian
dc.contributor.authorSchmitt, Michael
dc.contributor.authorPopp, Juergen
dc.contributor.authorBocklitz, Thomas
dc.date.accessioned2022-03-18T10:51:33Z
dc.date.available2022-03-18T10:51:33Z
dc.date.issued2021
dc.description.abstractHematoxylin and Eosin (H&E) staining is the 'gold-standard' method in histopathology. However, standard H&E staining of high-quality tissue sections requires long sample preparation times including sample embedding, which restricts its application for 'real-time' disease diagnosis. Due to this reason, a label-free alternative technique like non-linear multimodal (NLM) imaging, which is the combination of three non-linear optical modalities including coherent anti-Stokes Raman scattering, two-photon excitation fluorescence and second-harmonic generation, is proposed in this work. To correlate the information of the NLM images with H&E images, this work proposes computational staining of NLM images using deep learning models in a supervised and an unsupervised approach. In the supervised and the unsupervised approach, conditional generative adversarial networks (CGANs) and cycle conditional generative adversarial networks (cycle CGANs) are used, respectively. Both CGAN and cycle CGAN models generate pseudo H&E images, which are quantitatively analyzed based on mean squared error, structure similarity index and color shading similarity index. The mean of the three metrics calculated for the computationally generated H&E images indicate significant performance. Thus, utilizing CGAN and cycle CGAN models for computational staining is beneficial for diagnostic applications without performing a laboratory-based staining procedure. To the author's best knowledge, it is the first time that NLM images are computationally stained to H&E images using GANs in an unsupervised manner.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8275
dc.identifier.urihttps://doi.org/10.34657/7313
dc.language.isoengeng
dc.publisherWashington, DC : OSAeng
dc.relation.doihttps://doi.org/10.1364/BOE.415962
dc.relation.essn2156-7085
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.ddc610eng
dc.subject.otherCoherent scatteringeng
dc.subject.otherImage denoisingeng
dc.subject.otherulcerative colitiseng
dc.subject.otherMean square erroreng
dc.subject.otherNonlinear opticseng
dc.subject.otherRaman spectroscopyeng
dc.subject.otherAdversarial networkseng
dc.subject.otherCoherent anti Stokes Raman scatteringeng
dc.subject.otherstainingeng
dc.subject.othersecond harmonic generation microscopyeng
dc.subject.otherDiagnostic applicationseng
dc.subject.otherMulti-modal imagingeng
dc.subject.otherStructure similarityeng
dc.subject.otherTwo photon excitation fluorescenceeng
dc.subject.otherUnsupervised approacheseng
dc.subject.otherhematoxylineng
dc.subject.otherCrohn diseaseeng
dc.subject.othercycle conditional generative adversarial networkeng
dc.subject.otherdeep learningeng
dc.subject.otherfluorescence microscopyeng
dc.subject.otherquantitative analysiseng
dc.subject.othernonlinear optical microscopyeng
dc.subject.otherhistopathologyeng
dc.subject.othernetwork analysiseng
dc.subject.othermultimodal imagingeng
dc.subject.othermathematical modeleng
dc.subject.otherhuman tissueeng
dc.subject.otherimage analysiseng
dc.subject.otherimage processingeng
dc.subject.otherimage qualityeng
dc.subject.otherimage segmentationeng
dc.subject.othermachine learningeng
dc.titleComputational tissue staining of non-linear multimodal imaging using supervised and unsupervised deep learningeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPHTeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
boe-12-4-2280.pdf
Size:
19.54 MB
Format:
Adobe Portable Document Format
Description:
Collections