Analysis of the compressible, isotropic, neo-Hookean hyperelastic model

dc.bibliographicCitation.firstPage217
dc.bibliographicCitation.issue1
dc.bibliographicCitation.journalTitleMeccanica : international journal of the Italian Association of Theoretical and Applied Mechanics, AIMETAeng
dc.bibliographicCitation.lastPage232
dc.bibliographicCitation.volume58
dc.contributor.authorKossa, Attila
dc.contributor.authorValentine, Megan T.
dc.contributor.authorMcMeeking, Robert M.
dc.date.accessioned2023-02-21T06:32:54Z
dc.date.available2023-02-21T06:32:54Z
dc.date.issued2023
dc.description.abstractThe most widely-used representation of the compressible, isotropic, neo-Hookean hyperelastic model is considered in this paper. The version under investigation is that which is implemented in the commercial finite element software ABAQUS, ANSYS and COMSOL. Transverse stretch solutions are obtained for the following homogeneous deformations: uniaxial loading, equibiaxial loading in plane stress, and uniaxial loading in plane strain. The ground-state Poisson’s ratio is used to parameterize the constitutive model, and stress solutions are computed numerically for the physically permitted range of its values. Despite its broad application to a number of engineering problems, the physical limitations of the model, particularly in the small to moderate stretch regimes, are not explored. In this work, we describe and analyze results and make some critical observations, underlining the model’s advantages and limitations. For example, a snap-back feature of the transverse stretch is identified in uniaxial compression, a physically undesirable behavior unless validated by experimental data. The domain of this non-unique solution is determined in terms of the ground-state Poisson’s ratio and the state of stretch and stress. The analyses we perform are essential to enable the understanding of the characteristics of the standard, compressible, isotropic, neo-Hookean model used in ABAQUS, ANSYS and COMSOL. In addition, our results provide a framework for the parameter-fitting procedure needed to characterize this standard, compressible, isotropic neo-Hookean model in terms of experimental data.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11459
dc.identifier.urihttp://dx.doi.org/10.34657/10493
dc.language.isoeng
dc.publisherDordrecht [u.a.] : Springer Science + Business Media B.V
dc.relation.doihttps://doi.org/10.1007/s11012-022-01633-2
dc.relation.essn1572-9648
dc.relation.issn0025-6455
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc600
dc.subject.otherCompressibilityeng
dc.subject.otherConstitutive modeleng
dc.subject.otherHyperelasticityeng
dc.subject.otherMaterial modelingeng
dc.subject.otherNeo-Hookeaneng
dc.titleAnalysis of the compressible, isotropic, neo-Hookean hyperelastic modeleng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorINM
wgl.subjectIngenieurwissenschaftenger
wgl.typeZeitschriftenartikelger

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Analysis_of_the_compressible.pdf
Size:
3.6 MB
Format:
Adobe Portable Document Format
Description: