Wave trains, solitons and modulation theory in FPU chains
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We present an overview of recent results concerning wave trains, solitons and their modulation in FPU chains. We take a thermodynamic perspective and use hyperbolic scaling of particle index and time in order to pass to a macroscopic continuum limit. While strong convergence yields the well-known p-system of mass and momentum conservation, we generally obtain a weak form of it in terms of Young measures. The modulation approach accounts for microscopic oscillations, which we interpret as temperature, causing convergence only in a weak, average sense. We present the arising Whitham modulation equations in a thermodynamic form, as well as analytic and numerical tools for the resolution of the modulated wave trains. As a prototype for the occurrence of temperature from oscillation-free initial data, we discuss various Riemann problems, and the arising dispersive shock fans, which replace Lax-shocks. We predict scaling and jump conditions assuming a generic soliton at the shock front.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.