Synthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extension

dc.bibliographicCitation.firstPage4075eng
dc.bibliographicCitation.issue11eng
dc.bibliographicCitation.journalTitleBiomacromoleculeseng
dc.bibliographicCitation.lastPage4087eng
dc.bibliographicCitation.volume20eng
dc.contributor.authorLicht, Christopher
dc.contributor.authorRose, Jonas C.
dc.contributor.authorAnarkoli, Abdolrahman Omidinia
dc.contributor.authorBlondel, Delphine
dc.contributor.authorRoccio, Marta
dc.contributor.authorHaraszti, Tamás
dc.contributor.authorGehlen, David B.
dc.contributor.authorHubbell, Jeffrey A.
dc.contributor.authorLutolf, Matthias P.
dc.contributor.authorDe Laporte, Laura
dc.date.accessioned2022-03-17T13:41:23Z
dc.date.available2022-03-17T13:41:23Z
dc.date.issued2019
dc.description.abstractAn enzymatically cross-linked polyethylene glycol (PEG)-based hydrogel was engineered to promote and align nerve cells in a three-dimensional manner. To render the injectable, otherwise bioinert, PEG-based material supportive for cell growth, its mechanical and biochemical properties were optimized. A recombinant fibronectin fragment (FNIII9*-10/12-14) was coupled to the PEG backbone during gelation to provide cell adhesive and growth factor binding domains in close vicinity. Compared to full-length fibronectin, FNIII9*-10/12-14 supports nerve growth at similar concentrations. In a 3D environment, only the ultrasoft 1 w/v% PEG hydrogels with a storage modulus of ∼10 Pa promoted neuronal growth. This gel was used to establish the first fully synthetic, injectable Anisogel by the addition of magnetically aligned microelements, such as rod-shaped microgels or short fibers. The Anisogel led to linear neurite extension and represents a large step in the direction of clinical translation with the opportunity to treat acute spinal cord injuries.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8268
dc.identifier.urihttps://doi.org/10.34657/7306
dc.language.isoengeng
dc.publisherColumbus, Ohio : American Chemical Societyeng
dc.relation.doihttps://doi.org/10.1021/acs.biomac.9b00891
dc.relation.essn1526-4602
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.ddc540eng
dc.subject.ddc570eng
dc.subject.otherAdhesiveseng
dc.subject.otherCell proliferationeng
dc.subject.otherGelationeng
dc.subject.otherPolyethyleneseng
dc.subject.other3-D environmentseng
dc.subject.otherBiochemical propertieseng
dc.subject.otherCrosslinked polyethyleneeng
dc.subject.otherFibronectin fragmentseng
dc.subject.otherNeurite extensioneng
dc.subject.otherNeuronal growtheng
dc.subject.otherSpinal cord injuries (SCI)eng
dc.subject.otherNeuronseng
dc.subject.otherfibronectineng
dc.subject.othermacrogoleng
dc.subject.otherrecombinant proteineng
dc.subject.otherbiomaterialeng
dc.subject.otherfibronectineng
dc.subject.othermacrogoleng
dc.subject.othercell adhesioneng
dc.subject.othercell proliferationeng
dc.subject.otherconjugationeng
dc.subject.otherhydrogeleng
dc.subject.othernerve growtheng
dc.subject.otherneurite outgrowtheng
dc.subject.otherspinal cord injuryeng
dc.subject.otherstructure analysiseng
dc.subject.otherdrug effecteng
dc.subject.othergrowth, development and agingeng
dc.subject.othernerve celleng
dc.subject.otherSpinal Cord Injurieseng
dc.subject.otherPolyethylene Glycolseng
dc.subject.otherBiocompatible Materialseng
dc.subject.otherCell Proliferationeng
dc.subject.otherFibronectinseng
dc.titleSynthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extensioneng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorDWIeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acsbiomac9b00891.pdf
Size:
7.35 MB
Format:
Adobe Portable Document Format
Description:
Collections