Numerical methods for accurate description of ultrashort pulses in optical fibers

Loading...
Thumbnail Image
Date
2018
Volume
2470
Issue
Journal
Series Titel
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract

We consider a one-dimensional first-order nonlinear wave equation (the so-called forward Maxwell equation, FME) that applies to a few-cycle optical pulse propagating along a preferred direction in a nonlinear medium, e.g., ultrashort pulses in nonlinear fibers. The model is a good approximation to the standard second-order wave equation under assumption of weak nonlinearity. We compare FME to the commonly accepted generalized nonlinear Schrödinger equation, which quantifies the envelope of a quickly oscillating wave field based on the slowly varying envelope approximation. In our numerical example, we demonstrate that FME, in contrast to the envelope model, reveals new spectral lines when applied to few-cycle pulses. We analyze and compare pseudo-spectral numerical schemes employing symmetric splitting for both models. Finally, we adopt these schemes to a parallel computation and discuss scalability of the parallelization.

Description
Keywords
Forward Maxwell equation, nonlinear Schrödinger equation, splitting algorithm, Lax-Wendroff method, numerical experiments
Citation
Amiranashvili, S., Radziunas, M., Bandelow, U., & C̆iegis, R. (2018). Numerical methods for accurate description of ultrashort pulses in optical fibers (Vol. 2470). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik. https://doi.org//10.20347/WIAS.PREPRINT.2470
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.