Elastic scattering by finitely many point-like obstacles
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
This paper is concerned with the time-harmonic elastic scattering by a finite number N of point-like obstacles in Rn (n = 2, 3). We analyze the N-point interactions model in elasticity and derive the associated Green's tensor (integral kernel) in terms of the point positions and the scattering coefficients attached to them, following the approach in quantum mechanics for modeling N-particle interactions. In particular, explicit expressions are given for the scattered near and far fields corresponding to elastic plane waves or point-source incidences. As a result, we rigorously justify the Foldy method for modeling the multiple scattering by finitely many point-like obstacles for the Lame model. The arguments are based on the Fourier analysis and the Weinstein-Aronszajn inversion formula of the resolvent for the finite rank perturbations of closed operators in Hilbert spaces.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.