Annealed vs quenched critical points for a random walk pinning model

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1350
dc.contributor.authorBirkner, Matthias
dc.contributor.authorSun, Rongfeng
dc.date.accessioned2016-03-24T17:38:23Z
dc.date.available2019-06-28T08:03:18Z
dc.date.issued2008
dc.description.abstractWe study a random walk pinning model, where conditioned on a simple random walk $Y$ on $Z^d$ acting as a random medium, the path measure of a second independent simple random walk $X$ up to time $t$ is Gibbs transformed with Hamiltonian $-L_t(X,Y)$, where $L_t(X,Y)$ is the collision local time between $X$ and $Y$ up to time $t$. This model arises naturally in various contexts, including the study of the parabolic Anderson model with moving catalysts, the parabolic Anderson model with Brownian noise, and the directed polymer model. It falls in the same framework as the pinning and copolymer models, and exhibits a localization-delocalization transition as the inverse temperature $beta$ varies. We show that in dimensions $d=1,2$, the annealed and quenched critical values of $beta$ are both 0, while in dimensions $dgeq 4$, the quenched critical value of $beta$ is strictly larger than the annealed critical value (which is positive). This implies the existence of certain intermediate regimes for the parabolic Anderson model with Brownian noise and the directed polymer model. For $dgeq 5$, the same result has recently been established by Birkner, Greven and den Hollander via a quenched large deviation principle. Our proof is based on a fractional moment method used recently by Derrida, Giacomin, Lacoin and Toninelli to establish the non-coincidence of annealed and quenched critical points for the pinning model in the disorder-relevant regime. The critical case $d=3$ remains open.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/2034
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2013
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherRandom walkeng
dc.subject.otherpinning modelseng
dc.subject.otherannealed and quenched critical pointseng
dc.subject.othercollision local timeeng
dc.subject.otherdisordered systemeng
dc.titleAnnealed vs quenched critical points for a random walk pinning modeleng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
573544042.pdf
Size:
422.84 KB
Format:
Adobe Portable Document Format
Description: