Aging for the stationary Kardar--Parisi--Zhang equation and related models
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We study the aging property for stationary models in the KPZ universality class. In particular, we show aging for the stationary KPZ fixed point, the Cole-Hopf solution to the stationary KPZ equation, the height function of the stationary TASEP, last-passage percolation with boundary conditions and stationary directed polymers in the intermediate disorder regime. All of these models are shown to display a universal aging behavior characterized by the rate of decay of their correlations. As a comparison, we show aging for models in the Edwards-Wilkinson universality class where a different decay exponent is obtained. A key ingredient to our proofs is a characteristic of space-time stationarity - covariance-to-variance reduction - which allows to deduce the asymptotic behavior of the correlations of two space-time points by the one of the variances at one point. We formulate several open problems.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.