Filled carbon nanotubes as anode materials for lithium-ion batteries

dc.bibliographicCitation.firstPage1064eng
dc.bibliographicCitation.issue5eng
dc.bibliographicCitation.lastPage466eng
dc.bibliographicCitation.volume25eng
dc.contributor.authorThauer, E.
dc.contributor.authorOttmann, A.
dc.contributor.authorSchneider, P.
dc.contributor.authorMöller, L.
dc.contributor.authorDeeg, L.
dc.contributor.authorZeus, R.
dc.contributor.authorWilhelmi, F.
dc.contributor.authorSchlestein, L.
dc.contributor.authorNeef, C.
dc.contributor.authorGhunaim, R.
dc.contributor.authorGellesch, M.
dc.contributor.authorNowka, C.
dc.contributor.authorScholz, M.
dc.contributor.authorHaft, M.
dc.contributor.authorWurmehl, S.
dc.contributor.authorWenelska, K.
dc.contributor.authorMijowska, E.
dc.contributor.authorKapoor, A.
dc.contributor.authorBajpai, A.
dc.contributor.authorHampel, S.
dc.contributor.authorKlingeler, R.
dc.date.accessioned2020-07-17T12:25:28Z
dc.date.available2020-07-17T12:25:28Z
dc.date.issued2020
dc.description.abstractDownsizing well-established materials to the nanoscale is a key route to novel functionalities, in particular if different functionalities are merged in hybrid nanomaterials. Hybrid carbon-based hierarchical nanostructures are particularly promising for electrochemical energy storage since they combine benefits of nanosize effects, enhanced electrical conductivity and integrity of bulk materials. We show that endohedral multiwalled carbon nanotubes (CNT) encapsulating high-capacity (here: conversion and alloying) electrode materials have a high potential for use in anode materials for lithium-ion batteries (LIB). There are two essential characteristics of filled CNT relevant for application in electrochemical energy storage: (1) rigid hollow cavities of the CNT provide upper limits for nanoparticles in their inner cavities which are both separated from the fillings of other CNT and protected against degradation. In particular, the CNT shells resist strong volume changes of encapsulates in response to electrochemical cycling, which in conventional conversion and alloying materials hinders application in energy storage devices. (2) Carbon mantles ensure electrical contact to the active material as they are unaffected by potential cracks of the encapsulate and form a stable conductive network in the electrode compound. Our studies confirm that encapsulates are electrochemically active and can achieve full theoretical reversible capacity. The results imply that encapsulating nanostructures inside CNT can provide a route to new high-performance nanocomposite anode materials for LIB.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3572
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4943
dc.language.isoengeng
dc.publisherBasel : MDPI AGeng
dc.relation.doihttps://doi.org/10.3390/molecules25051064
dc.relation.ispartofseriesMolecules 25 (2020), Nr. 5eng
dc.relation.issn1420-3049
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectAnode materialeng
dc.subjectFilled carbon nanotubeseng
dc.subjectHybrid nanomaterialseng
dc.subjectLithium-ion batterieseng
dc.subject.ddc540eng
dc.titleFilled carbon nanotubes as anode materials for lithium-ion batterieseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleMoleculeseng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thauer et al 2020, Filled Carbon Nanotubes as Anode Materials.pdf
Size:
6.6 MB
Format:
Adobe Portable Document Format
Description:
Collections