This item is non-discoverable
Extremes of some Gaussian random interfaces
dc.contributor.author | Chiarini, Alberto | |
dc.contributor.author | Cipriani, Alessandra | |
dc.contributor.author | Hazra, Rajat Subhra | |
dc.date.available | 2019-06-28T08:25:51Z | |
dc.date.issued | 2015 | |
dc.description.abstract | In this articlewe give a general criterion for some dependent Gaussianmodels to belong to maximal domain of attraction of Gumbel, following an application of the Stein-Chen method studied in Arratia et al. (1989). We also show the convergence of the associated point process. As an application, we show the conditions are satisfied by some of the wellknown supercritical Gaussian interface models, namely, membrane model, massive and massless discrete Gaussian free field, fractional Gaussian free field. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/3461 | |
dc.language.iso | eng | eng |
dc.publisher | Cambridge : arXiv | eng |
dc.relation.uri | http://arxiv.org/abs/1509.08903 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Extreme value theory | eng |
dc.subject.other | Gaussian random interfaces | eng |
dc.subject.other | Stein-Chen method | eng |
dc.title | Extremes of some Gaussian random interfaces | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |