Optimization with learning-informed differential equation constraints and its applications

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2754
dc.contributor.authorDong, Guozhi
dc.contributor.authorHintermüller, Michael
dc.contributor.authorPapafitsoros, Kostas
dc.date.accessioned2022-06-30T13:14:19Z
dc.date.available2022-06-30T13:14:19Z
dc.date.issued2020
dc.description.abstractInspired by applications in optimal control of semilinear elliptic partial differential equations and physics-integrated imaging, differential equation constrained optimization problems with constituents that are only accessible through data-driven techniques are studied. A particular focus is on the analysis and on numerical methods for problems with machine-learned components. For a rather general context, an error analysis is provided, and particular properties resulting from artificial neural network based approximations are addressed. Moreover, for each of the two inspiring applications analytical details are presented and numerical results are provided.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9404
dc.identifier.urihttps://doi.org/10.34657/8442
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2754
dc.relation.hasversionhttps://doi.org/10.1051/cocv/2021100
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherPDE constrained optimizationeng
dc.subject.otherartificial neural networkeng
dc.subject.othersemilinear PDEseng
dc.subject.otherintegrated physicsbasedeng
dc.subject.otherimagingeng
dc.subject.otherlearning-informed modeleng
dc.subject.otherquantitative MRIeng
dc.subject.othersemi-smooth Newton SQP algorithmeng
dc.titleOptimization with learning-informed differential equation constraints and its applicationseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent44 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2754.pdf
Size:
1.74 MB
Format:
Adobe Portable Document Format
Description: