Optimization with learning-informed differential equation constraints and its applications
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2754 | |
dc.contributor.author | Dong, Guozhi | |
dc.contributor.author | Hintermüller, Michael | |
dc.contributor.author | Papafitsoros, Kostas | |
dc.date.accessioned | 2022-06-30T13:14:19Z | |
dc.date.available | 2022-06-30T13:14:19Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Inspired by applications in optimal control of semilinear elliptic partial differential equations and physics-integrated imaging, differential equation constrained optimization problems with constituents that are only accessible through data-driven techniques are studied. A particular focus is on the analysis and on numerical methods for problems with machine-learned components. For a rather general context, an error analysis is provided, and particular properties resulting from artificial neural network based approximations are addressed. Moreover, for each of the two inspiring applications analytical details are presented and numerical results are provided. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9404 | |
dc.identifier.uri | https://doi.org/10.34657/8442 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2754 | |
dc.relation.hasversion | https://doi.org/10.1051/cocv/2021100 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | PDE constrained optimization | eng |
dc.subject.other | artificial neural network | eng |
dc.subject.other | semilinear PDEs | eng |
dc.subject.other | integrated physicsbased | eng |
dc.subject.other | imaging | eng |
dc.subject.other | learning-informed model | eng |
dc.subject.other | quantitative MRI | eng |
dc.subject.other | semi-smooth Newton SQP algorithm | eng |
dc.title | Optimization with learning-informed differential equation constraints and its applications | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 44 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2754.pdf
- Size:
- 1.74 MB
- Format:
- Adobe Portable Document Format
- Description: