Generating a rule-based global gridded tillage dataset

dc.bibliographicCitation.firstPage823eng
dc.bibliographicCitation.issue2eng
dc.bibliographicCitation.journalTitleEarth system science data : ESSDeng
dc.bibliographicCitation.lastPage843eng
dc.bibliographicCitation.volume11eng
dc.contributor.authorPorwollik, Vera
dc.contributor.authorRolinski, Susanne
dc.contributor.authorHeinke, Jens
dc.contributor.authorMüller, Christoph
dc.date.accessioned2021-09-29T10:49:18Z
dc.date.available2021-09-29T10:49:18Z
dc.date.issued2020
dc.description.abstractTillage is a central element in agricultural soil management and has direct and indirect effects on processes in the biosphere. Effects of agricultural soil management can be assessed by soil, crop, and ecosystem models, but global assessments are hampered by lack of information on the type of tillage and their spatial distribution. This study describes the generation of a classification of tillage practices and presents the spatially explicit mapping of these crop-specific tillage systems for around the year 2005. Tillage practices differ by the kind of equipment used, soil surface and depth affected, timing, and their purpose within the cropping systems. We classified the broad variety of globally relevant tillage practices into six categories: no-tillage in the context of Conservation Agriculture, traditional annual, traditional rotational, rotational, reduced, and conventional annual tillage. The identified tillage systems were allocated to gridded crop-specific cropland areas with a resolution of 5 arcmin. Allocation rules were based on literature findings and combine area information on crop type, water management regime, field size, water erosion, income, and aridity. We scaled reported national Conservation Agriculture areas down to grid cells via a probability-based approach for 54 countries. We provide area estimates of the six tillage systems aggregated to global and country scale. We found that 8.67Mkm2 of global cropland area was tilled intensively at least once a year, whereas the remaining 2.65Mkm2 was tilled less intensely. Further, we identified 4.67Mkm2 of cropland as an area where Conservation Agriculture could be expanded to under current conditions. The tillage classification enables the parameterization of different soil management practices in various kinds of model simulations. The crop-specific tillage dataset indicates the spatial distribution of soil management practices, which is a prerequisite to assess erosion, carbon sequestration potential, as well as water, and nutrient dynamics of cropland soils. The dynamic definition of the allocation rules and accounting for national statistics, such as the share of Conservation Agriculture per country, also allow for derivation of datasets for historical and future global soil management scenarios. The resulting tillage system dataset and source code are accessible via an open-data repository (DOIs: https://doi.org/10.5880/PIK.2019.009 and https://doi.org/10.5880/PIK.2019.010, Porwollik et al., 2019a, b). © Author(s) 2019.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6939
dc.identifier.urihttps://doi.org/10.34657/5986
dc.language.isoengeng
dc.publisherKatlenburg-Lindau : Copernics Publicationseng
dc.relation.doihttps://doi.org/10.5194/essd-11-823-2019
dc.relation.essn1866-3516
dc.relation.issn1866-3508
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc550eng
dc.subject.otheragricultural soil managementeng
dc.subject.othertillage systemeng
dc.subject.otherConservation Agricultureeng
dc.titleGenerating a rule-based global gridded tillage dataseteng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPIKeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Generating a rule-based global gridded tillage dataset.pdf
Size:
6.78 MB
Format:
Adobe Portable Document Format
Description: