Evolutionary design of explainable algorithms for biomedical image segmentation

dc.bibliographicCitation.articleNumber7112
dc.bibliographicCitation.firstPage7112
dc.bibliographicCitation.issue1
dc.bibliographicCitation.journalTitleNature Communicationseng
dc.bibliographicCitation.volume14
dc.contributor.authorCortacero, Kévin
dc.contributor.authorMcKenzie, Brienne
dc.contributor.authorMüller, Sabina
dc.contributor.authorKhazen, Roxana
dc.contributor.authorLafouresse, Fanny
dc.contributor.authorCorsaut, Gaëlle
dc.contributor.authorVan Acker, Nathalie
dc.contributor.authorFrenois, François-Xavier
dc.contributor.authorLamant, Laurence
dc.contributor.authorMeyer, Nicolas
dc.contributor.authorVergier, Béatrice
dc.contributor.authorWilson, Dennis G.
dc.contributor.authorLuga, Hervé
dc.contributor.authorStaufer, Oskar
dc.contributor.authorDustin, Michael L.
dc.contributor.authorValitutti, Salvatore
dc.contributor.authorCussat-Blanc, Sylvain
dc.date.accessioned2024-06-11T06:52:56Z
dc.date.available2024-06-11T06:52:56Z
dc.date.issued2023
dc.description.abstractAn unresolved issue in contemporary biomedicine is the overwhelming number and diversity of complex images that require annotation, analysis and interpretation. Recent advances in Deep Learning have revolutionized the field of computer vision, creating algorithms that compete with human experts in image segmentation tasks. However, these frameworks require large human-annotated datasets for training and the resulting “black box” models are difficult to interpret. In this study, we introduce Kartezio, a modular Cartesian Genetic Programming-based computational strategy that generates fully transparent and easily interpretable image processing pipelines by iteratively assembling and parameterizing computer vision functions. The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks, while requiring drastically smaller training datasets. This Few-Shot Learning method confers tremendous flexibility, speed, and functionality to this approach. We then deploy Kartezio to solve a series of semantic and instance segmentation problems, and demonstrate its utility across diverse images ranging from multiplexed tissue histopathology images to high resolution microscopy images. While the flexibility, robustness and practical utility of Kartezio make this fully explicable evolutionary designer a potential game-changer in the field of biomedical image processing, Kartezio remains complementary and potentially auxiliary to mainstream Deep Learning approaches.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/14676
dc.identifier.urihttps://doi.org/10.34657/13698
dc.language.isoeng
dc.publisher[London] : Nature Publishing Group UK
dc.relation.doihttps://doi.org/10.1038/s41467-023-42664-x
dc.relation.essn2041-1723
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc500
dc.subject.otherAlgorithmseng
dc.subject.otherBiological Evolutioneng
dc.subject.otherHumanseng
dc.subject.otherImage Processing, Computer-Assistedeng
dc.subject.otherMicroscopyeng
dc.subject.otherSemanticseng
dc.subject.otheralgorithmeng
dc.subject.othercomputer visioneng
dc.subject.otherdesigneng
dc.subject.otherhistopathologyeng
dc.subject.otherimage processingeng
dc.subject.otherprecisioneng
dc.subject.othersegmentationeng
dc.subject.otheralgorithmeng
dc.subject.otherarticleeng
dc.subject.othercomputer visioneng
dc.subject.otherdeep learningeng
dc.subject.otherhistopathologyeng
dc.subject.otherhumaneng
dc.subject.otherhuman experimenteng
dc.subject.otherhuman tissueeng
dc.subject.otherimage processingeng
dc.subject.otherimage segmentationeng
dc.subject.otherlearningeng
dc.subject.othermicroscopyeng
dc.subject.otherpipelineeng
dc.subject.othervelocityeng
dc.subject.otherevolutioneng
dc.subject.otherimage processingeng
dc.subject.otherprocedureseng
dc.subject.othersemanticseng
dc.titleEvolutionary design of explainable algorithms for biomedical image segmentationeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorINM
wgl.subjectMedizin, Gesundheitger
wgl.typeZeitschriftenartikelger

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-023-42664-x.pdf
Size:
2.69 MB
Format:
Adobe Portable Document Format
Description:

Collections