Fluid and diffusion limits for the Poisson encounter-mating model
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Stochastic encounter-mating (SEM) models describe monogamous permanent pair formation in finite zoological populations of multitype females and males. In this article we study SEM with Poisson firing times. We prove that an infinite population corresponds to a fluid limit, i.e., the stochastic dynamics converges to a deterministic system governed by coupled ODEs. Moreover, we establish a functional central limit theorem and give a diffusion approximation for the model. Next, we convert the fluid limit ODEs to the well-known Lotka-Volterra and replicator equations from population dynamics. Under the so-called fine balance condition, which characterizes panmixia for finite populations, we solve the corresponding replicator equations and give an exact expression for the fluid limit. Finally, we consider the case with two types of females and males. Without the fine balance assumption, but under some symmetry conditions, we give an explicit formula for the limiting mating pattern, and then use it to fully characterize assortative mating.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.