The 2020 UV emitter roadmap

dc.bibliographicCitation.firstPage503001eng
dc.bibliographicCitation.issue50eng
dc.bibliographicCitation.volume53eng
dc.contributor.authorAmano, Hiroshi
dc.contributor.authorCollazo, Ramón
dc.contributor.authorDe Santi, Carlo
dc.contributor.authorEinfeldt, Sven
dc.contributor.authorFunato, Mitsuru
dc.contributor.authorGlaab, Johannes
dc.contributor.authorHagedorn, Sylvia
dc.contributor.authorHirano, Akira
dc.contributor.authorHirayama, Hideki
dc.contributor.authorIshii, Ryota
dc.contributor.authorKashima, Yukio
dc.contributor.authorKawakami, Yoichi
dc.contributor.authorKirste, Ronny
dc.contributor.authorKneissl, Michael
dc.contributor.authorMartin, Robert
dc.contributor.authorMehnke, Frank
dc.contributor.authorMeneghini, Matteo
dc.contributor.authorOugazzaden, Abdallah
dc.contributor.authorParbrook, Peter J.
dc.contributor.authorRajan, Siddharth
dc.contributor.authorReddy, Pramod
dc.contributor.authorRömer, Friedhard
dc.contributor.authorFriedhard, Jan
dc.contributor.authorSarkar, Biplab
dc.contributor.authorScholz, Ferdinand
dc.contributor.authorSchowalter, Leo J
dc.contributor.authorShields, Philip
dc.contributor.authorSitar, Zlatko
dc.contributor.authorSulmoni, Luca
dc.contributor.authorWang, Tao
dc.contributor.authorWernicke, Tim
dc.contributor.authorWeyers, Markus
dc.contributor.authorWitzigmann, Bernd
dc.contributor.authorWu, Yuh-Renn
dc.contributor.authorWunderer, Thomas
dc.contributor.authorZhang, Yuewei
dc.date.accessioned2021-08-18T07:28:33Z
dc.date.available2021-08-18T07:28:33Z
dc.date.issued2020
dc.description.abstractSolid state UV emitters have many advantages over conventional UV sources. The (Al,In,Ga)N material system is best suited to produce LEDs and laser diodes from 400 nm down to 210 nm - due to its large and tuneable direct band gap, n- and p-doping capability up to the largest bandgap material AlN and a growth and fabrication technology compatible with the current visible InGaN-based LED production. However AlGaN based UV-emitters still suffer from numerous challenges compared to their visible counterparts that become most obvious by consideration of their light output power, operation voltage and long term stability. Most of these challenges are related to the large bandgap of the materials. However, the development since the first realization of UV electroluminescence in the 1970s shows that an improvement in understanding and technology allows the performance of UV emitters to be pushed far beyond the current state. One example is the very recent realization of edge emitting laser diodes emitting in the UVC at 271.8 nm and in the UVB spectral range at 298 nm. This roadmap summarizes the current state of the art for the most important aspects of UV emitters, their challenges and provides an outlook for future developments. © 2020 IOP Publishing Ltd.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6496
dc.identifier.urihttps://doi.org/10.34657/5543
dc.language.isoengeng
dc.publisherBristol : IOP Publ.eng
dc.relation.doihttps://doi.org/10.1088/1361-6463/aba64c
dc.relation.essn1361-6463
dc.relation.ispartofseriesJournal of physics : D, Applied physics 53 (2020), Nr. 50eng
dc.relation.issn0022-3727
dc.relation.issn0262-8171
dc.relation.issn0508-3443
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectAlGaNeng
dc.subjectInGaNeng
dc.subjectlight emitting diodeseng
dc.subjectultravioleteng
dc.subjectUV-LEDger
dc.subject.ddc530eng
dc.titleThe 2020 UV emitter roadmapeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleJournal of physics : D, Applied physicseng
tib.accessRightsopenAccesseng
wgl.contributorFBHeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The 2020 UV emitter roadmap.pdf
Size:
6.64 MB
Format:
Adobe Portable Document Format
Description:
Collections