On a diffuse interface model of tumor growth
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 1956 | |
dc.contributor.author | Frigeri, Sergio | |
dc.contributor.author | Grasselli, Maurizio | |
dc.contributor.author | Rocca, Elisabetta | |
dc.date.accessioned | 2016-03-24T17:37:10Z | |
dc.date.available | 2019-06-28T08:14:32Z | |
dc.date.issued | 2014 | |
dc.description.abstract | We consider a diffuse interface model of tumor growth proposed by A. Hawkins-Daruud et al. This model consists of the Cahn-Hilliard equation for the tumor cell fraction φ nonlinearly coupled with a reaction-diffusion equation for ψ which represents the nutrient-rich extracellular water volume fraction. The coupling is expressed through a suitable proliferation functionp(φ) multiplied by the differences of the chemical potentials for φ and ψ. The system is equipped with no-flux boundary conditions which entails the conservation of the total mass, that is, the spatial average of φ+ψ. Here we prove the existence of a weak solution to the associated Cauchy problem, provided that the potential F and p satisfy sufficiently general conditions. Then we show that the weak solution is unique and continuously depends on the initial data, provided that p satisfies slightly stronger growth restrictions. Also, we demonstrate the existence of a strong solution and that any weak solution regularizes in finite time. Finally, we prove the existence of the global attractor in a phase space characterized by an a priori bounded energy. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 2198-5855 | |
dc.identifier.uri | https://doi.org/10.34657/2787 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2980 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | eng |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Diffuse interface | eng |
dc.subject.other | tumor growth | eng |
dc.subject.other | Cahn-Hilliard equations | eng |
dc.subject.other | reaction-diffusion equations | eng |
dc.subject.other | weak solutions | eng |
dc.subject.other | well-posedness | eng |
dc.subject.other | global attractors | eng |
dc.title | On a diffuse interface model of tumor growth | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 78801482X.pdf
- Size:
- 232.74 KB
- Format:
- Adobe Portable Document Format
- Description: