Toward ultrafast magnetic depth profiling using time-resolved x-ray resonant magnetic reflectivity

dc.bibliographicCitation.firstPage034305eng
dc.bibliographicCitation.issue3eng
dc.bibliographicCitation.journalTitleStructural dynamicseng
dc.bibliographicCitation.volume8eng
dc.contributor.authorChardonnet, Valentin
dc.contributor.authorHennes, Marcel
dc.contributor.authorJarrier, Romain
dc.contributor.authorDelaunay, Renaud
dc.contributor.authorJaouen, Nicolas
dc.contributor.authorKuhlmann, Marion
dc.contributor.authorEkanayake, Nagitha
dc.contributor.authorLéveillé, Cyril
dc.contributor.authorvon Korff Schmising, Clemens
dc.contributor.authorSchick, Daniel
dc.contributor.authorYao, Kelvin
dc.contributor.authorLiu, Xuan
dc.contributor.authorChiuzbăian, Gheorghe S.
dc.contributor.authorLüning, Jan
dc.contributor.authorVodungbo, Boris
dc.contributor.authorJal, Emmanuelle
dc.date.accessioned2022-04-20T12:37:57Z
dc.date.available2022-04-20T12:37:57Z
dc.date.issued2021
dc.description.abstractDuring the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non-local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time-resolved x-ray resonant magnetic reflectivity, can distinguish local and non-local effects. Here, we demonstrate the feasibility of this technique in a pump–probe geometry using a custom-built reflectometer at the FLASH2 free-electron laser (FEL). Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 nm (≃310 eV), we were able to probe close to the Fe L3 edge (706.8 eV) of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non-homogeneous loss of magnetization and a significant dilation of 2 Å of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetization.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8747
dc.identifier.urihttps://doi.org/10.34657/7785
dc.language.isoengeng
dc.publisherMelville, NY : AIP Publishing LLCeng
dc.relation.doihttps://doi.org/10.1063/4.0000109
dc.relation.essn2329-7778
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.ddc500eng
dc.subject.otherDepth profilingeng
dc.subject.otherElectronseng
dc.subject.otherEntertainment industryeng
dc.subject.otherFree electron laserseng
dc.subject.otherMagnetic thin filmseng
dc.subject.otherMagnetizationeng
dc.subject.otherPumping (laser)eng
dc.subject.otherReflectioneng
dc.subject.otherFemto-second resolutioneng
dc.subject.otherFemtosecond optical excitationeng
dc.subject.otherFundamental wavelengtheng
dc.subject.otherMagnetic depth profileeng
dc.subject.otherMicroscopic mechanismseng
dc.subject.otherQuantitative descriptioneng
dc.subject.otherUltrafast demagnetizationeng
dc.subject.otherX rayseng
dc.titleToward ultrafast magnetic depth profiling using time-resolved x-ray resonant magnetic reflectivityeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMBIeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Toward_ultrafast_magnetic_depth_profiling.pdf
Size:
2.4 MB
Format:
Adobe Portable Document Format
Description:
Collections