How to compute the length of a geodesic on a Riemannian manifold with small error in arbitrary Sobolev norms
Loading...
Date
2008
Authors
Volume
1384
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract
We compute the length of geodesics on a Riemannian manifold by regular polynomial interpolation of the global solution of the eikonal equation related to the line element $ds^2=g_ijdx^idx^j$ of the manifold. Our algorithm approximates the length functional in arbitrarily strong Sobolev norms. Error estimates are obtained where the geometric information is used. It is pointed out how the algorithm can be used to get accurate approximations of solutions of linear parabolic partial differential equations leading to obvious applications in finance, physics and other sciences
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.