Antiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO3 Memristive Devices

dc.bibliographicCitation.firstPage2004118eng
dc.bibliographicCitation.issue48eng
dc.bibliographicCitation.journalTitleAdvanced Functional Materialseng
dc.bibliographicCitation.volume30eng
dc.contributor.authorHeisig, Thomas
dc.contributor.authorKler, Joe
dc.contributor.authorDu, Hongchu
dc.contributor.authorBaeumer, Christoph
dc.contributor.authorHensling, Felix
dc.contributor.authorGlöß, Maria
dc.contributor.authorMoors, Marco
dc.contributor.authorLocatelli, Andrea
dc.contributor.authorMenteş, Tevfik Onur
dc.contributor.authorGenuzio, Francesca
dc.contributor.authorMayer, Joachim
dc.contributor.authorDe Souza, Roger A.
dc.contributor.authorDittmann, Regina
dc.date.accessioned2021-09-01T10:06:37Z
dc.date.available2021-09-01T10:06:37Z
dc.date.issued2020
dc.description.abstractResistive switching in transition metal oxide-based metal-insulator-metal structures relies on the reversible drift of ions under an applied electric field on the nanoscale. In such structures, the formation of conductive filaments is believed to be induced by the electric-field driven migration of oxygen anions, while the cation sublattice is often considered to be inactive. This simple mechanistic picture of the switching process is incomplete as both oxygen anions and metal cations have been previously identified as mobile species under device operation. Here, spectromicroscopic techniques combined with atomistic simulations to elucidate the diffusion and drift processes that take place in the resistive switching model material SrTiO3 are used. It is demonstrated that the conductive filament in epitaxial SrTiO3 devices is not homogenous but exhibits a complex microstructure. Specifically, the filament consists of a conductive Ti3+-rich region and insulating Sr-rich islands. Transmission electron microscopy shows that the Sr-rich islands emerge above Ruddlesden–Popper type antiphase boundaries. The role of these extended defects is clarified by molecular static and molecular dynamic simulations, which reveal that the Ruddlesden–Popper antiphase boundaries constitute diffusion fast-paths for Sr cations in the perovskites structure. © 2020 The Authors. Published by Wiley-VCH GmbHeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6651
dc.identifier.urihttps://doi.org/10.34657/5698
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/adfm.202004118
dc.relation.essn1099-0712
dc.relation.essn1616-3028
dc.relation.issn1616-301X
dc.relation.issn1057-9257
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.ddc620eng
dc.subject.ddc540eng
dc.subject.ddc530eng
dc.subject.otherdiffusioneng
dc.subject.otherresistive switchingeng
dc.subject.otherRuddlesden–Poppereng
dc.subject.otherSrTiO3eng
dc.subject.otherSTEMeng
dc.titleAntiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO3 Memristive Deviceseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIOMeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adfm.202004118.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
Description: