Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi-Dirac statistic functions

Loading...
Thumbnail Image
Date
2014
Volume
2053
Issue
Journal
Series Titel
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

If the statistic function is modified, the equations can be derived by a variational formulation or just using a generalized Einstein relation. In both cases a dissipative generalization of the Scharfetter-Gummel scheme citeSch_Gu, understood as a one-dimensional constant current approximation, is derived for strictly monotone coefficient functions in the elliptic operator $nabla cdot bal ff(v) nabla $, $v$ chemical potential, while the hole density is defined by $p=cal F(v)le e^v.$ A closed form integration of the governing equation would simplify the practical use, but mean value theorem based results are sufficient to prove existence of bounded discrete steady state solutions on any boundary conforming Delaunay grid. These results hold for any piecewise, continuous, and monotone approximation of $bal ff(v)$ and $cal F(v)$.

Description
Keywords
Generalized Scharfetter-Gummel scheme, Fermi-Dirac statistics, generalized Einstein relation, dissipativity, bounded discrete steady state solutions, unique thermodynamic equilibrium, degenerate semiconductors
Citation
Gärtner, K. (2014). Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi-Dirac statistic functions (Vol. 2053). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.