Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi-Dirac statistic functions

Loading...
Thumbnail Image

Date

Volume

2053

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

If the statistic function is modified, the equations can be derived by a variational formulation or just using a generalized Einstein relation. In both cases a dissipative generalization of the Scharfetter-Gummel scheme citeSch_Gu, understood as a one-dimensional constant current approximation, is derived for strictly monotone coefficient functions in the elliptic operator $nabla cdot bal ff(v) nabla $, $v$ chemical potential, while the hole density is defined by $p=cal F(v)le e^v.$ A closed form integration of the governing equation would simplify the practical use, but mean value theorem based results are sufficient to prove existence of bounded discrete steady state solutions on any boundary conforming Delaunay grid. These results hold for any piecewise, continuous, and monotone approximation of $bal ff(v)$ and $cal F(v)$.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.