Gating a single-molecule transistor with individual atoms

dc.bibliographicCitation.journalTitleNature Physicseng
dc.contributor.authorMartínez-Blanco, Jesús
dc.contributor.authorNacci, Christophe
dc.contributor.authorZieger, G.
dc.contributor.authorDellith, J.
dc.contributor.authorIhring, A.
dc.contributor.authorUndisz, A.
dc.contributor.authorMeyer, H.-G.
dc.date.accessioned2018-01-17T13:00:45Z
dc.date.available2019-06-28T12:38:53Z
dc.date.issued2015
dc.description.abstractTransistors, regardless of their size, rely on electrical gates to control the conductance between source and drain contacts. In atomic-scale transistors, this conductance is sensitive to single electrons hopping via individual orbitals. Single-electron transport in molecular transistors has been previously studied using top-down approaches to gating, such as lithography and break junctions. But atomically precise control of the gate--which is crucial to transistor action at the smallest size scales--is not possible with these approaches. Here, we used individual charged atoms, manipulated by a scanning tunnelling microscope, to create the electrical gates for a single-molecule transistor. This degree of control allowed us to tune the molecule into the regime of sequential single-electron tunnelling, albeit with a conductance gap more than one order of magnitude larger than observed previously. This unexpected behaviour arises from the existence of two different orientational conformations of the molecule, depending on its charge state. Our results show that strong coupling between these charge and conformational degrees of freedom leads to new behaviour beyond the established picture of single-electron transport in atomic-scale transistors.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4119
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttps://arxiv.org/abs/1603.00908
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc530eng
dc.subject.otherCondensed Matter - Mesoscale and Nanoscale Physicseng
dc.titleGating a single-molecule transistor with individual atomseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPDIeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Collections