Strain induced power enhancement of far-UVC LEDs on high temperature annealed AlN templates

dc.bibliographicCitation.firstPage011102
dc.bibliographicCitation.issue1
dc.bibliographicCitation.journalTitleApplied physics letterseng
dc.bibliographicCitation.volume122
dc.contributor.authorKnauer, A.
dc.contributor.authorKolbe, T.
dc.contributor.authorHagedorn, S.
dc.contributor.authorHoepfner, J.
dc.contributor.authorGuttmann, M.
dc.contributor.authorCho, H.K.
dc.contributor.authorRass, J.
dc.contributor.authorRuschel, J.
dc.contributor.authorEinfeldt, S.
dc.contributor.authorKneissl, M.
dc.contributor.authorWeyers, M.
dc.date.accessioned2023-02-10T07:33:38Z
dc.date.available2023-02-10T07:33:38Z
dc.date.issued2023
dc.description.abstractHigh temperature annealed AlN/sapphire templates exhibit a reduced in-plane lattice constant compared to conventional non-annealed AlN/sapphire grown by metalorganic vapor phase epitaxy (MOVPE). This leads to additional lattice mismatch between the template and the AlGaN-based ultraviolet-C light emitting diode (UVC LED) heterostructure grown on these templates. This mismatch introduces additional compressive strain in AlGaN quantum wells resulting in enhanced transverse electric polarization of the quantum well emission at wavelengths below 235 nm compared to layer structures deposited on conventional MOVPE-grown AlN templates, which exhibit mainly transverse magnetic polarized emission. In addition, high temperature annealed AlN/sapphire templates also feature reduced defect densities leading to reduced non-radiative recombination. Based on these two factors, i.e., better outcoupling efficiency of the transverse electric polarized light and an enhanced internal quantum efficiency, the performance characteristic of far-UVC LEDs emitting at 231 nm was further improved with a cw optical output power of 3.5 mW at 150 mA.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11373
dc.identifier.urihttp://dx.doi.org/10.34657/10407
dc.language.isoeng
dc.publisherMelville, NY : American Inst. of Physics
dc.relation.doihttps://doi.org/10.1063/5.0134253
dc.relation.essn1077-3118
dc.relation.issn0003-6951
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530
dc.subject.otherAluminum gallium nitrideeng
dc.subject.otherAnnealingeng
dc.subject.otherGallium alloyseng
dc.subject.otherIII-V semiconductorseng
dc.subject.otherLattice mismatcheng
dc.subject.otherLight emitting diodeseng
dc.subject.otherMetallorganic vapor phase epitaxyeng
dc.subject.otherQuantum efficiencyeng
dc.subject.otherSemiconductor alloyseng
dc.subject.otherSemiconductor quantum wellseng
dc.titleStrain induced power enhancement of far-UVC LEDs on high temperature annealed AlN templateseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorFBH
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Strain_induced_power_enhancement.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description:
Collections