Mini-Workshop: Variable Curvature Bounds, Analysis and Topology on Dirichlet Spaces (hybrid meeting)

Loading...
Thumbnail Image
Date
2021
Authors
Volume
58
Issue
Journal
Series Titel
Oberwolfach reports : OWR
Book Title
Publisher
Zürich : EMS Publ. House
Link to publishers version
Abstract

A Dirichlet form $\mathcal{E}$ is a densely defined bilinear form on a Hilbert space of the form $L^2(X,\mu)$, subject to some additional properties, which make sure that $\mathcal{E}$ can be considered as a natural abstraction of the usual Dirichlet energy $\mathcal{E}(f_1,f_2)=\int_D (\nabla f_1,\nabla f_2) $ on a domain $D$ in $\mathbb{R}^m$. The main strength of this theory, however, is that it allows also to treat nonlocal situations such as energy forms on graphs simultaneously. In typical applications, $X$ is a metrizable space, and the theory of Dirichlet forms makes it possible to define notions such as curvature bounds on $X$ (although $X$ need not be a Riemannian manifold), and also to obtain topological information on $X$ in terms of such geometric information.

Description
Keywords
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.