Mini-Workshop: Variable Curvature Bounds, Analysis and Topology on Dirichlet Spaces (hybrid meeting)
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
A Dirichlet form $\mathcal{E}$ is a densely defined bilinear form on a Hilbert space of the form $L^2(X,\mu)$, subject to some additional properties, which make sure that $\mathcal{E}$ can be considered as a natural abstraction of the usual Dirichlet energy $\mathcal{E}(f_1,f_2)=\int_D (\nabla f_1,\nabla f_2) $ on a domain $D$ in $\mathbb{R}^m$. The main strength of this theory, however, is that it allows also to treat nonlocal situations such as energy forms on graphs simultaneously. In typical applications, $X$ is a metrizable space, and the theory of Dirichlet forms makes it possible to define notions such as curvature bounds on $X$ (although $X$ need not be a Riemannian manifold), and also to obtain topological information on $X$ in terms of such geometric information.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.