Mini-Workshop: Variable Curvature Bounds, Analysis and Topology on Dirichlet Spaces (hybrid meeting)
dc.bibliographicCitation.firstPage | 3135 | |
dc.bibliographicCitation.lastPage | 3186 | |
dc.bibliographicCitation.seriesTitle | Oberwolfach reports : OWR | eng |
dc.bibliographicCitation.volume | 58 | |
dc.contributor.other | Güneysu, Batu | |
dc.contributor.other | Keller, Matthias | |
dc.contributor.other | Kuwae, Kazuhiro | |
dc.date.accessioned | 2023-12-15T10:27:51Z | |
dc.date.available | 2023-12-15T10:27:51Z | |
dc.date.issued | 2021 | |
dc.description.abstract | A Dirichlet form $\mathcal{E}$ is a densely defined bilinear form on a Hilbert space of the form $L^2(X,\mu)$, subject to some additional properties, which make sure that $\mathcal{E}$ can be considered as a natural abstraction of the usual Dirichlet energy $\mathcal{E}(f_1,f_2)=\int_D (\nabla f_1,\nabla f_2) $ on a domain $D$ in $\mathbb{R}^m$. The main strength of this theory, however, is that it allows also to treat nonlocal situations such as energy forms on graphs simultaneously. In typical applications, $X$ is a metrizable space, and the theory of Dirichlet forms makes it possible to define notions such as curvature bounds on $X$ (although $X$ need not be a Riemannian manifold), and also to obtain topological information on $X$ in terms of such geometric information. | eng |
dc.description.version | publishedVersion | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/13550 | |
dc.identifier.uri | https://doi.org/10.34657/12580 | |
dc.language.iso | eng | |
dc.publisher | Zürich : EMS Publ. House | eng |
dc.relation.doi | https://doi.org/10.14760/OWR-2021-58 | |
dc.relation.essn | 1660-8941 | |
dc.relation.issn | 1660-8933 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.subject.ddc | 510 | |
dc.subject.gnd | Konferenzschrift | ger |
dc.title | Mini-Workshop: Variable Curvature Bounds, Analysis and Topology on Dirichlet Spaces (hybrid meeting) | eng |
dc.type | Article | eng |
dc.type | Text | eng |
dcterms.event | Mini-Workshop: Variable Curvature Bounds, Analysis and Topology on Dirichlet Spaces (hybrid meeting), 05 Dec - 11 Dec 2021, Oberwolfach | |
tib.accessRights | openAccess | |
wgl.contributor | MFO | |
wgl.subject | Mathematik | |
wgl.type | Zeitschriftenartikel |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWR_2021_58.pdf
- Size:
- 518.88 KB
- Format:
- Adobe Portable Document Format
- Description: