Mini-Workshop: Variable Curvature Bounds, Analysis and Topology on Dirichlet Spaces (hybrid meeting)

dc.bibliographicCitation.firstPage3135
dc.bibliographicCitation.lastPage3186
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume58
dc.contributor.otherGüneysu, Batu
dc.contributor.otherKeller, Matthias
dc.contributor.otherKuwae, Kazuhiro
dc.date.accessioned2023-12-15T10:27:51Z
dc.date.available2023-12-15T10:27:51Z
dc.date.issued2021
dc.description.abstractA Dirichlet form $\mathcal{E}$ is a densely defined bilinear form on a Hilbert space of the form $L^2(X,\mu)$, subject to some additional properties, which make sure that $\mathcal{E}$ can be considered as a natural abstraction of the usual Dirichlet energy $\mathcal{E}(f_1,f_2)=\int_D (\nabla f_1,\nabla f_2) $ on a domain $D$ in $\mathbb{R}^m$. The main strength of this theory, however, is that it allows also to treat nonlocal situations such as energy forms on graphs simultaneously. In typical applications, $X$ is a metrizable space, and the theory of Dirichlet forms makes it possible to define notions such as curvature bounds on $X$ (although $X$ need not be a Riemannian manifold), and also to obtain topological information on $X$ in terms of such geometric information.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13550
dc.identifier.urihttps://doi.org/10.34657/12580
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2021-58
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleMini-Workshop: Variable Curvature Bounds, Analysis and Topology on Dirichlet Spaces (hybrid meeting)eng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventMini-Workshop: Variable Curvature Bounds, Analysis and Topology on Dirichlet Spaces (hybrid meeting), 05 Dec - 11 Dec 2021, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2021_58.pdf
Size:
518.88 KB
Format:
Adobe Portable Document Format
Description: