Generalized gradients for probabilistic/robust (probust) constraints

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2569
dc.contributor.authorAckooij, Wim van
dc.contributor.authorHenrion, René
dc.contributor.authorPérez-Aros, Pedro
dc.date.accessioned2019-03-09T03:38:24Z
dc.date.available2019-06-28T08:10:36Z
dc.date.issued2019
dc.description.abstractProbability functions are a powerful modelling tool when seeking to account for uncertainty in optimization problems. In practice, such uncertainty may result from different sources for which unequal information is available. A convenient combination with ideas from robust optimization then leads to probust functions, i.e., probability functions acting on generalized semi-infinite inequality systems. In this paper we employ the powerful variational tools developed by Boris Mordukhovich to study generalized differentiation of such probust functions. We also provide explicit outer estimates of the generalized subdifferentials in terms of nominal data.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/2400
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2750
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2569
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherStochastic optimizationeng
dc.subject.otherprobabilistic constraintseng
dc.subject.otherchance constraintseng
dc.subject.othergradients of probability functionseng
dc.subject.otherprobust constraintseng
dc.titleGeneralized gradients for probabilistic/robust (probust) constraintseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1067533818.pdf
Size:
306.44 KB
Format:
Adobe Portable Document Format
Description: