Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-Muscat(5.0) and evaluation using satellite data

dc.bibliographicCitation.firstPage2231
dc.bibliographicCitation.issue6
dc.bibliographicCitation.lastPage2246
dc.bibliographicCitation.volume10
dc.contributor.authorDipu, Sudhakar
dc.contributor.authorQuaas, Johannes
dc.contributor.authorWolke, Ralf
dc.contributor.authorStoll, Jens
dc.contributor.authorMühlbauer, Andreas
dc.contributor.authorSourdeval, Odran
dc.contributor.authorSalzmann, Marc
dc.contributor.authorHeinold, Bernd
dc.contributor.authorTegen, Ina
dc.date.accessioned2023-02-27T08:51:29Z
dc.date.available2023-02-27T08:51:29Z
dc.date.issued2017
dc.description.abstractThe regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (Muscat) is extended in this work to represent aerosol-cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol-radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol-cloud-radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25°g × g0.25°. To reduce the complexity in aerosol-cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5g%, and the cloud droplet number concentration is reduced by 21.5g%.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11540
dc.identifier.urihttp://dx.doi.org/10.34657/10574
dc.language.isoeng
dc.publisherKatlenburg-Lindau : Copernicus
dc.relation.doihttps://doi.org/10.5194/gmd-10-2231-2017
dc.relation.essn1991-9603
dc.relation.ispartofseriesGeoscientific model development : GMD 10 (2017), Nr. 6
dc.rights.licenseCC BY 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0
dc.subjectaerosoleng
dc.subjectatmospheric modelingeng
dc.subjectclimate feedbackeng
dc.subjectcloudeng
dc.subjectcloud condensation nucleuseng
dc.subjectcloud dropleteng
dc.subjectcloud microphysicseng
dc.subjectcloud radiative forcingeng
dc.subjectregional climateeng
dc.subjectsatellite dataeng
dc.subject.ddc910
dc.titleImplementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-Muscat(5.0) and evaluation using satellite dataeng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleGeoscientific model development : GMD
tib.accessRightsopenAccess
wgl.contributorTROPOS
wgl.subjectGeowissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Implementation_of_aerosol-cloud_interactions.pdf
Size:
10.87 MB
Format:
Adobe Portable Document Format
Description: