Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements

dc.bibliographicCitation.firstPage11315eng
dc.bibliographicCitation.issue17eng
dc.bibliographicCitation.lastPage11342eng
dc.bibliographicCitation.volume19eng
dc.contributor.authorMarinou, Eleni
dc.contributor.authorTesche, Matthias
dc.contributor.authorNenes, Athanasios
dc.contributor.authorAnsmann, Albert
dc.contributor.authorSchrod, Jann
dc.contributor.authorMamali, Dimitra
dc.contributor.authorTsekeri, Alexandra
dc.contributor.authorPikridas, Michael
dc.contributor.authorBaars, Holger
dc.contributor.authorEngelmann, Ronny
dc.contributor.authorVoudouri, Kalliopi-Artemis
dc.contributor.authorSolomos, Stavros
dc.contributor.authorSciare, Jean
dc.contributor.authorGroß, Silke
dc.contributor.authorEwald, Florian
dc.contributor.authorAmiridis, Vassilis
dc.date.accessioned2021-10-19T07:44:20Z
dc.date.available2021-10-19T07:44:20Z
dc.date.issued2019
dc.description.abstractAerosols that are efficient ice-nucleating particles (INPs) are crucial for the formation of cloud ice via heterogeneous nucleation in the atmosphere. The distribution of INPs on a large spatial scale and as a function of height determines their impact on clouds and climate. However, in situ measurements of INPs provide sparse coverage over space and time. A promising approach to address this gap is to retrieve INP concentration profiles by combining particle concentration profiles derived by lidar measurements with INP efficiency parameterizations for different freezing mechanisms (immersion freezing, deposition nucleation). Here, we assess the feasibility of this new method for both ground-based and spaceborne lidar measurements, using in situ observations collected with unmanned aerial vehicles (UAVs) and subsequently analyzed with the FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment) INP counter from an experimental campaign at Cyprus in April 2016. Analyzing five case studies we calculated the cloud-relevant particle number concentrations using lidar measurements (n250,dry with an uncertainty of 20 % to 40 % and Sdry with an uncertainty of 30 % to 50 %), and we assessed the suitability of the different INP parameterizations with respect to the temperature range and the type of particles considered. Specifically, our analysis suggests that our calculations using the parameterization of Ullrich et al. (2017) (applicable for the temperature range −50 to −33 ∘C) agree within 1 order of magnitude with the in situ observations of nINP; thus, the parameterization of Ullrich et al. (2017) can efficiently address the deposition nucleation pathway in dust-dominated environments. Additionally, our calculations using the combination of the parameterizations of DeMott et al. (2015, 2010) (applicable for the temperature range −35 to −9 ∘C) agree within 2 orders of magnitude with the in situ observations of INP concentrations (nINP) and can thus efficiently address the immersion/condensation pathway of dust and nondust particles. The same conclusion is derived from the compilation of the parameterizations of DeMott et al. (2015) for dust and Ullrich et al. (2017) for soot.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7033
dc.identifier.urihttps://doi.org/10.34657/6080
dc.language.isoengeng
dc.publisherKatlenburg-Lindau : EGUeng
dc.relation.doihttps://doi.org/10.5194/acp-19-11315-2019
dc.relation.essn1680-7324
dc.relation.ispartofseriesAtmospheric chemistry and physics 19 (2019), Nr. 17eng
dc.relation.issn1680-7316
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectaerosoleng
dc.subjectatmospheric depositioneng
dc.subjectcloud microphysicseng
dc.subjectconcentration (composition)eng
dc.subjectlidareng
dc.subjectunmanned vehicleeng
dc.subject.ddc550eng
dc.titleRetrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurementseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAtmospheric chemistry and physicseng
tib.accessRightsopenAccesseng
wgl.contributorIAPeng
wgl.contributorTROPOSeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements.pdf
Size:
11.33 MB
Format:
Adobe Portable Document Format
Description: