Transparent Low Molecular Weight Poly(Ethylene Glycol) Diacrylate-Based Hydrogels as Film Media for Photoswitchable Drugs

Loading...
Thumbnail Image
Date
2017-11-23
Volume
9
Issue
12
Journal
Series Titel
Book Title
Publisher
Basel : MDPI
Link to publishers version
Abstract

Hydrogels have shown a great potential as materials for drug delivery systems thanks to their usually excellent bio-compatibility and their ability to trap water-soluble organic molecules in a porous network. In this study, poly(ethylene glycol)-based hydrogels containing a model dye were synthesized by ultraviolet (UV-A) photopolymerization of low-molecular weight macro-monomers and the material properties (dye release ability, transparency, morphology, and polymerization kinetics) were studied. Real-time infrared measurements revealed that the photopolymerization of the materials was strongly limited when the dye was added to the uncured formulation. Consequently, the procedure was adapted to allow for the formation of sufficiently cured gels that are able to capture and later on to release dye molecules in phosphate-buffered saline solution within a few hours. Due to the transparency of the materials in the 400–800 nm range, the hydrogels are suitable for the loading and excitation of photoactive molecules. These can be uptaken by and released from the polymer matrix. Therefore, such materials may find applications as cheap and tailored materials in photodynamic therapy (i.e., light-induced treatment of skin infections by bacteria, fungi, and viruses using photoactive drugs).

Description
Keywords
Drug release, Hydrogels, Photodynamic therapy, Photopolymerization, Photosensitizer, Poly(ethylene glycol) diacrylate
Citation
Pelras, T., Glass, S., Scherzer, T., Elsner, C., Schulze, A., & Abel, B. (2017). Transparent Low Molecular Weight Poly(Ethylene Glycol) Diacrylate-Based Hydrogels as Film Media for Photoswitchable Drugs. 9(12). https://doi.org//10.3390/polym9120639
Collections
License
CC BY 4.0 Unported