Assessment of the suitability of the chemical reaction pathway algorithm as a reduction method for plasma chemistry

Loading...
Thumbnail Image
Date
2022
Volume
55
Issue
50
Journal
Journal of Physics D: Applied Physics
Series Titel
Book Title
Publisher
Bristol : IOP Publ.
Abstract

Determination of chemical pathways, sets of interlinked reactions, is a well-known method to study complex chemistries. In order to have a trustworthy and accurate method for analysis of chemical processes in complicated systems such as low-temperature plasmas, a used algorithm should keep conservation of necessary parameters during all steps of an analysis. In this research, the introduced algorithm by Lehmann (2004 J. Atmos. Chem. 47 45-78) is chosen as a candidate for studying tangled low-temperature plasma chemistry. As a first step, the ability of the algorithm to keep conservation of reactions rates and net production of species is assessed by designing some artificial examples. In that stage, ambiguous parts of the algorithm are clarified, and test cases are provided to verify implementation of the algorithm in any programming infrastructure. Then, the capability of the algorithm as a reduction method is investigated by applying a newly developed semi-automated method based on pathway analysis to two plasma chemistry examples, a H 2 O - H e microwave induced plasma and a pulsed H 2 plasma.

Description
Keywords
Citation
Tadayon Mousavi, S., Gulpen, J. G. M., Graef, W. A. A. D., Koelman, P. M. J., Carbone, E. A. D., & van Dijk, J. (2022). Assessment of the suitability of the chemical reaction pathway algorithm as a reduction method for plasma chemistry (Bristol : IOP Publ.). Bristol : IOP Publ. https://doi.org//10.1088/1361-6463/ac9913
Collections
License
CC BY 4.0 Unported