The dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – theoretical framework

dc.bibliographicCitation.firstPage15247
dc.bibliographicCitation.issue23
dc.bibliographicCitation.lastPage15263
dc.bibliographicCitation.volume20
dc.contributor.authorJimenez, Cristofer
dc.contributor.authorAnsmann, Albert
dc.contributor.authorEngelmann, Ronny
dc.contributor.authorDonovan, David
dc.contributor.authorMalinka, Aleksey
dc.contributor.authorSchmidt, Jörg
dc.contributor.authorSeifert, Patric
dc.contributor.authorWandinger, Ulla
dc.date.accessioned2022-03-31T11:50:20Z
dc.date.available2022-03-31T11:50:20Z
dc.date.issued2021
dc.description.abstractIn a series of two articles, a novel, robust, and practicable lidar approach is presented that allows us to derive microphysical properties of liquid-water clouds (cloud extinction coefficient, droplet effective radius, liquid-water content, cloud droplet number concentration) at a height of 50–100 m above the cloud base. The temporal resolution of the observations is on the order of 30–120 s. Together with the aerosol information (aerosol extinction coefficients, cloud condensation nucleus concentration) below the cloud layer, obtained with the same lidar, in-depth aerosol–cloud interaction studies can be performed. The theoretical background and the methodology of the new cloud lidar technique is outlined in this article (Part 1), and measurement applications are presented in a companion publication (Part 2) (Jimenez et al., 2020a). The novel cloud retrieval technique is based on lidar observations of the volume linear depolarization ratio at two different receiver fields of view (FOVs). Extensive simulations of lidar returns in the multiple scattering regime were conducted to investigate the capabilities of a dual-FOV polarization lidar to measure cloud properties and to quantify the information content in the measured depolarization features regarding the basic retrieval parameters (cloud extinction coefficient, droplet effective radius). Key simulation results and the overall data analysis scheme developed to obtain the aerosol and cloud products are presented.eng
dc.description.sponsorshipLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8523
dc.identifier.urihttps://doi.org/10.34657/7561
dc.language.isoeng
dc.publisherKatlenburg-Lindau : EGU
dc.relation.doihttps://doi.org/10.5194/acp-20-15247-2020
dc.relation.essn1680-7324
dc.relation.ispartofseriesAtmospheric Chemistry and Physics 20 (2021), Nr. 23eng
dc.relation.issn1680-7316
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc550eng
dc.titleThe dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – theoretical frameworkeng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleAtmospheric Chemistry and Physicseng
tib.accessRightsopenAccess
wgl.contributorTROPOS
wgl.subjectGeowissenschaften
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acp-20-15247-2020.pdf
Size:
2.8 MB
Format:
Adobe Portable Document Format
Description: