A model-based constraint on CO2 fertilisation

dc.bibliographicCitation.firstPage339eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.lastPage355eng
dc.bibliographicCitation.volume10
dc.contributor.authorHolden, P.B.
dc.contributor.authorEdwards, N.R.
dc.contributor.authorGerten, D.
dc.contributor.authorSchaphoff, S.
dc.date.accessioned2018-08-20T21:37:32Z
dc.date.available2019-06-26T17:18:12Z
dc.date.issued2013
dc.description.abstractWe derive a constraint on the strength of CO2 fertilisation of the terrestrial biosphere through a "top-down" approach, calibrating Earth system model parameters constrained by the post-industrial increase of atmospheric CO2 concentration. We derive a probabilistic prediction for the globally averaged strength of CO2 fertilisation in nature, for the period 1850 to 2000 AD, implicitly net of other limiting factors such as nutrient availability. The approach yields an estimate that is independent of CO2 enrichment experiments. To achieve this, an essential requirement was the incorporation of a land use change (LUC) scheme into the GENIE Earth system model. Using output from a 671-member ensemble of transient GENIE simulations, we build an emulator of the change in atmospheric CO2 concentration change since the preindustrial period. We use this emulator to sample the 28-dimensional input parameter space. A Bayesian calibration of the emulator output suggests that the increase in gross primary productivity (GPP) in response to a doubling of CO2 from preindustrial values is very likely (90% confidence) to exceed 20%, with a most likely value of 40–60%. It is important to note that we do not represent all of the possible contributing mechanisms to the terrestrial sink. The missing processes are subsumed into our calibration of CO2 fertilisation, which therefore represents the combined effect of CO2 fertilisation and additional missing processes. If the missing processes are a net sink then our estimate represents an upper bound. We derive calibrated estimates of carbon fluxes that are consistent with existing estimates. The present-day land–atmosphere flux (1990–2000) is estimated at −0.7 GTC yr−1 (likely, 66% confidence, in the range 0.4 to −1.7 GTC yr−1). The present-day ocean–atmosphere flux (1990–2000) is estimated to be −2.3 GTC yr−1 (likely in the range −1.8 to −2.7 GTC yr−1). We estimate cumulative net land emissions over the post-industrial period (land use change emissions net of the CO2 fertilisation and climate sinks) to be 66 GTC, likely to lie in the range 0 to 128 GTC.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/708
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/530
dc.language.isoengeng
dc.publisherMünchen : European Geopyhsical Unioneng
dc.relation.doihttps://doi.org/10.5194/bg-10-339-2013
dc.relation.ispartofseriesBiogeosciences, Volume 10, Issue 1, Page 339-355eng
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subjectair-sea interactioneng
dc.subjectbiosphereeng
dc.subjectcalibrationeng
dc.subjectcarbon dioxideeng
dc.subjectcarbon fluxeng
dc.subjectconcentration (composition)eng
dc.subjectnumerical modeleng
dc.subjectprimary productioneng
dc.subject.ddc550eng
dc.titleA model-based constraint on CO2 fertilisationeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleBiogeoscienceseng
tib.accessRightsopenAccesseng
wgl.contributorPIKeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bg-10-339-2013.pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format
Description: