Converse Magnetoelectric Composite Resonator for Sensing Small Magnetic Fields

dc.bibliographicCitation.firstPage16355eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.journalTitleScientific Reportseng
dc.bibliographicCitation.lastPage2422eng
dc.bibliographicCitation.volume9eng
dc.contributor.authorHayes, P.
dc.contributor.authorJovičević Klug, M.
dc.contributor.authorToxværd, S.
dc.contributor.authorDurdaut, P.
dc.contributor.authorSchell, V.
dc.contributor.authorTeplyuk, A.
dc.contributor.authorBurdin, D.
dc.contributor.authorWinkler, A.
dc.contributor.authorWeser, R.
dc.contributor.authorFetisov, Y.
dc.contributor.authorHöft, M.
dc.contributor.authorKnöchel, R.
dc.contributor.authorMcCord, J.
dc.contributor.authorQuandt, E.
dc.date.accessioned2020-07-18T06:12:42Z
dc.date.available2020-07-18T06:12:42Z
dc.date.issued2019
dc.description.abstractMagnetoelectric (ME) thin film composites consisting of sputtered piezoelectric (PE) and magnetostrictive (MS) layers enable for measurements of magnetic fields passively, i.e. an AC magnetic field directly generates an ME voltage by mechanical coupling of the MS deformation to the PE phase. In order to achieve high field sensitivities a magnetic bias field is necessary to operate at the maximum piezomagnetic coefficient of the MS phase, harnessing mechanical resonances further enhances this direct ME effect size. Despite being able to detect very small AC field amplitudes, exploiting mechanical resonances directly, implies a limitation to available signal bandwidth along with the inherent inability to detect DC or very low frequency magnetic fields. The presented work demonstrates converse ME modulation of thin film Si cantilever composites of mesoscopic dimensions (25 mm × 2.45 mm × 0.35 mm), employing piezoelectric AlN and magnetostrictive FeCoSiB films of 2 µm thickness each. A high frequency mechanical resonance at about 515 kHz leads to strong induced voltages in a surrounding pickup coil with matched self-resonance, leading to field sensitivities up to 64 kV/T. A DC limit of detection of 210 pT/Hz1/2 as well as about 70 pT/Hz1/2 at 10 Hz, without the need for a magnetic bias field, pave the way towards biomagnetic applications.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3645
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5016
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/s41598-019-52657-w
dc.relation.issn2045-2322
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherMagnetoelectric (ME) thin film compositeseng
dc.subject.otherpiezoelectric (PE) layerseng
dc.subject.othermagnetostrictive (MS) layerseng
dc.titleConverse Magnetoelectric Composite Resonator for Sensing Small Magnetic Fieldseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hayes et al 2019, Converse Magnetoelectric Composite Resonator for Sensing Small Magnetic Fields.pdf
Size:
2.77 MB
Format:
Adobe Portable Document Format
Description:
Collections