Suitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysis

dc.bibliographicCitation.firstPage81110eng
dc.bibliographicCitation.issue8eng
dc.bibliographicCitation.volume8eng
dc.contributor.authorAdkison, Kate M.
dc.contributor.authorShang, Shun-Li
dc.contributor.authorBocklund, Brandon J.
dc.contributor.authorKlimm, Detlef
dc.contributor.authorSchlom, Darrell G.
dc.contributor.authorLiu, Zi-Kui
dc.date.accessioned2021-10-20T12:14:56Z
dc.date.available2021-10-20T12:14:56Z
dc.date.issued2020
dc.description.abstractWe have conducted a comprehensive thermodynamic analysis of the volatility of 128 binary oxides to evaluate their suitability as source materials for oxide molecular-beam epitaxy (MBE). 16 solid or liquid oxides are identified that evaporate nearly congruently from stable oxide sources to gas species: As2O3, B2O3, BaO, MoO3, OsO4, P2O5, PbO, PuO2, Rb2O, Re2O7, Sb2O3, SeO2, SnO, ThO2, Tl2O, and WO3. An additional 24 oxides could provide molecular beams with dominant gas species of CeO, Cs2O, DyO, ErO, Ga2O, GdO, GeO, HfO, HoO, In2O, LaO, LuO, NdO, PmO, PrO, PuO, ScO, SiO, SmO, TbO, Te2O2, U2O6, VO2, and YO2. The present findings are in close accord with available experimental results in the literature. For example, As2O3, B2O3, BaO, MoO3, PbO, Sb2O3, and WO3 are the only oxides in the ideal category that have been used in MBE. The remaining oxides deemed ideal for MBE awaiting experimental verification. We also consider two-phase mixtures as a route to achieve the desired congruent evaporation characteristic of an ideal MBE source. These include (Ga2O3 + Ga) to produce a molecular beam of Ga2O(g), (GeO2 + Ge) to produce GeO(g), (SiO2 + Si) to produce SiO(g), (SnO2 + Sn) to produce SnO(g), etc.; these suboxide sources enable suboxide MBE. Our analysis provides the vapor pressures of the gas species over the condensed phases of 128 binary oxides, which may be either solid or liquid depending on the melting temperature. © 2020 Author(s).eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7066
dc.identifier.urihttps://doi.org/10.34657/6113
dc.language.isoengeng
dc.publisherMelville, NY : AIP Publ.eng
dc.relation.doihttps://doi.org/10.1063/5.0013159
dc.relation.essn2166-532X
dc.relation.ispartofseriesAPL materials : high impact open access journal in functional materials science 8 (2020), Nr. 8eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectAntimony compoundseng
dc.subjectBarium compoundseng
dc.subjectCesium compoundseng
dc.subjectGermanium oxideseng
dc.subjectLead oxideeng
dc.subjectMolecular beam epitaxyeng
dc.subjectMolecular beamseng
dc.subjectMolybdenum oxideeng
dc.subjectPhase transitionseng
dc.subjectRubidium compoundseng
dc.subjectSilicaeng
dc.subjectSiliconeng
dc.subjectThallium compoundseng
dc.subjectThermoanalysiseng
dc.subjectThermodynamic propertieseng
dc.subjectThoriaeng
dc.subjectTungsten compoundseng
dc.subjectVanadium dioxideeng
dc.subjectBinary oxideseng
dc.subjectCondensed phasiseng
dc.subjectExperimental verificationeng
dc.subjectLiquid oxideseng
dc.subjectSource materialeng
dc.subjectStable oxideseng
dc.subjectThermo dynamic analysiseng
dc.subjectTwo phase mixtureseng
dc.subjectGallium compoundseng
dc.subject.ddc620eng
dc.subject.ddc600eng
dc.titleSuitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysiseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAPL materials : high impact open access journal in functional materials scienceeng
tib.accessRightsopenAccesseng
wgl.contributorIKZeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Suitability of binary oxides for molecular-beam epitaxy source materials_A comprehensive thermodynamic analysis.pdf
Size:
3.7 MB
Format:
Adobe Portable Document Format
Description: