Suitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysis

dc.bibliographicCitation.firstPage81110eng
dc.bibliographicCitation.issue8eng
dc.bibliographicCitation.journalTitleAPL materials : high impact open access journal in functional materials scienceeng
dc.bibliographicCitation.volume8eng
dc.contributor.authorAdkison, Kate M.
dc.contributor.authorShang, Shun-Li
dc.contributor.authorBocklund, Brandon J.
dc.contributor.authorKlimm, Detlef
dc.contributor.authorSchlom, Darrell G.
dc.contributor.authorLiu, Zi-Kui
dc.date.accessioned2021-10-20T12:14:56Z
dc.date.available2021-10-20T12:14:56Z
dc.date.issued2020
dc.description.abstractWe have conducted a comprehensive thermodynamic analysis of the volatility of 128 binary oxides to evaluate their suitability as source materials for oxide molecular-beam epitaxy (MBE). 16 solid or liquid oxides are identified that evaporate nearly congruently from stable oxide sources to gas species: As2O3, B2O3, BaO, MoO3, OsO4, P2O5, PbO, PuO2, Rb2O, Re2O7, Sb2O3, SeO2, SnO, ThO2, Tl2O, and WO3. An additional 24 oxides could provide molecular beams with dominant gas species of CeO, Cs2O, DyO, ErO, Ga2O, GdO, GeO, HfO, HoO, In2O, LaO, LuO, NdO, PmO, PrO, PuO, ScO, SiO, SmO, TbO, Te2O2, U2O6, VO2, and YO2. The present findings are in close accord with available experimental results in the literature. For example, As2O3, B2O3, BaO, MoO3, PbO, Sb2O3, and WO3 are the only oxides in the ideal category that have been used in MBE. The remaining oxides deemed ideal for MBE awaiting experimental verification. We also consider two-phase mixtures as a route to achieve the desired congruent evaporation characteristic of an ideal MBE source. These include (Ga2O3 + Ga) to produce a molecular beam of Ga2O(g), (GeO2 + Ge) to produce GeO(g), (SiO2 + Si) to produce SiO(g), (SnO2 + Sn) to produce SnO(g), etc.; these suboxide sources enable suboxide MBE. Our analysis provides the vapor pressures of the gas species over the condensed phases of 128 binary oxides, which may be either solid or liquid depending on the melting temperature. © 2020 Author(s).eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7066
dc.identifier.urihttps://doi.org/10.34657/6113
dc.language.isoengeng
dc.publisherMelville, NY : AIP Publ.eng
dc.relation.doihttps://doi.org/10.1063/5.0013159
dc.relation.essn2166-532X
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc620eng
dc.subject.ddc600eng
dc.subject.otherAntimony compoundseng
dc.subject.otherBarium compoundseng
dc.subject.otherCesium compoundseng
dc.subject.otherGermanium oxideseng
dc.subject.otherLead oxideeng
dc.subject.otherMolecular beam epitaxyeng
dc.subject.otherMolecular beamseng
dc.subject.otherMolybdenum oxideeng
dc.subject.otherPhase transitionseng
dc.subject.otherRubidium compoundseng
dc.subject.otherSilicaeng
dc.subject.otherSiliconeng
dc.subject.otherThallium compoundseng
dc.subject.otherThermoanalysiseng
dc.subject.otherThermodynamic propertieseng
dc.subject.otherThoriaeng
dc.subject.otherTungsten compoundseng
dc.subject.otherVanadium dioxideeng
dc.subject.otherBinary oxideseng
dc.subject.otherCondensed phasiseng
dc.subject.otherExperimental verificationeng
dc.subject.otherLiquid oxideseng
dc.subject.otherSource materialeng
dc.subject.otherStable oxideseng
dc.subject.otherThermo dynamic analysiseng
dc.subject.otherTwo phase mixtureseng
dc.subject.otherGallium compoundseng
dc.titleSuitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysiseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIKZeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Suitability of binary oxides for molecular-beam epitaxy source materials_A comprehensive thermodynamic analysis.pdf
Size:
3.7 MB
Format:
Adobe Portable Document Format
Description: