On multi-species diffusion with size exclusion
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We revisit a classical continuum model for the diffusion of multiple species with size-exclusion constraint, which leads to a degenerate nonlinear cross-diffusion system. The purpose of this article is twofold: first, it aims at a systematic study of the question of existence of weak solutions and their long-time asymptotic behaviour. Second, it provides a weak-strong stability estimate for a wide range of coefficients, which had been missing so far. In order to achieve the results mentioned above, we exploit the formal gradient-flow structure of the model with respect to a logarithmic entropy, which leads to best estimates in the full-interaction case, where all cross-diffusion coefficients are non-zero. Those are crucial to obtain the minimal Sobolev regularity needed for a weak-strong stability result. For meaningful cases when some of the coefficients vanish, we provide a novel existence result based on approximation by the full-interaction case.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.