Merging Top-Down and Bottom-Up Approaches to Fabricate Artificial Photonic Nanomaterials with a Deterministic Electric and Magnetic Response
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
Artificial photonic nanomaterials made from densely packed scatterers are frequently realized either by top-down or bottom-up techniques. While top-down techniques offer unprecedented control over achievable geometries for the scatterers, by trend they suffer from being limited to planar and periodic structures. In contrast, materials fabricated with bottom-up techniques do not suffer from such disadvantages but, unfortunately, they offer only little control on achievable geometries for the scatterers. To overcome these limitations, a nanofabrication strategy is introduced that merges both approaches. A large number of scatterers are fabricated with a tailored optical response by fast character projection electron-beam lithography and are embedded into a membrane. By peeling-off this membrane from the substrate, scrambling, and densifying it, a bulk material comprising densely packed and randomly arranged scatterers is obtained. The fabrication of an isotropic material from these scatterers with a strong electric and magnetic response is demonstrated. The approach of this study unlocks novel opportunities to fabricate nanomaterials with a complex optical response in the bulk but also on top of arbitrarily shaped surfaces. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim