Bistable firing pattern in a neural network model

dc.bibliographicCitation.firstPage19eng
dc.bibliographicCitation.volume13eng
dc.contributor.authorProtachevicz, Paulo R.
dc.contributor.authorBorges, Fernando S.
dc.contributor.authorLameu, Ewandson L.
dc.contributor.authorJi, Peng
dc.contributor.authorIarosz, Kelly C.
dc.contributor.authorKihara, Alexandre H.
dc.contributor.authorCaldas, Ibere L.
dc.contributor.authorSzezech Jr., Jose D.
dc.contributor.authorBaptista, Murilo S.
dc.contributor.authorMacau, Elbert E.N.
dc.contributor.authorAntonopoulos, Chris G.
dc.contributor.authorBatista, Antonio M.
dc.contributor.authorKurths, Jürgen
dc.date.accessioned2021-10-29T06:44:16Z
dc.date.available2021-10-29T06:44:16Z
dc.date.issued2019
dc.description.abstractExcessively high, neural synchronization has been associated with epileptic seizures, one of the most common brain diseases worldwide. A better understanding of neural synchronization mechanisms can thus help control or even treat epilepsy. In this paper, we study neural synchronization in a random network where nodes are neurons with excitatory and inhibitory synapses, and neural activity for each node is provided by the adaptive exponential integrate-and-fire model. In this framework, we verify that the decrease in the influence of inhibition can generate synchronization originating from a pattern of desynchronized spikes. The transition from desynchronous spikes to synchronous bursts of activity, induced by varying the synaptic coupling, emerges in a hysteresis loop due to bistability where abnormal (excessively high synchronous) regimes exist. We verify that, for parameters in the bistability regime, a square current pulse can trigger excessively high (abnormal) synchronization, a process that can reproduce features of epileptic seizures. Then, we show that it is possible to suppress such abnormal synchronization by applying a small-amplitude external current on > 10% of the neurons in the network. Our results demonstrate that external electrical stimulation not only can trigger synchronous behavior, but more importantly, it can be used as a means to reduce abnormal synchronization and thus, control or treat effectively epileptic seizures. © 2019 Protachevicz, Borges, Lameu, Ji, Iarosz, Kihara, Caldas, Szezech, Baptista, Macau, Antonopoulos, Batista and Kurths.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7143
dc.identifier.urihttps://doi.org/10.34657/6190
dc.language.isoengeng
dc.publisherLausanne : Frontiers Mediaeng
dc.relation.doihttps://doi.org/10.3389/fncom.2019.00019
dc.relation.essn1662-5188
dc.relation.ispartofseriesFrontiers in Computational Neuroscience 13 (2019)eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectAdaptive exponential integrate-and-fire neural modeleng
dc.subjectBistable regimeeng
dc.subjectEpilepsyeng
dc.subjectNetworkeng
dc.subjectNeural dynamicseng
dc.subjectSynchronizationeng
dc.subject.ddc610eng
dc.titleBistable firing pattern in a neural network modeleng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleFrontiers in Computational Neuroscienceeng
tib.accessRightsopenAccesseng
wgl.contributorPIKeng
wgl.subjectMedizin, Gesundheiteng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fncom-13-00019.pdf
Size:
3.79 MB
Format:
Adobe Portable Document Format
Description:
Collections