Design and Evaluation of Radiation-Hardened Standard Cell Flip-Flops

dc.bibliographicCitation.firstPage4796eng
dc.bibliographicCitation.issue11eng
dc.bibliographicCitation.journalTitleIEEE transactions on circuits and systems : 1, Regular paperseng
dc.bibliographicCitation.lastPage4809eng
dc.bibliographicCitation.volume68eng
dc.contributor.authorSchrape, Oliver
dc.contributor.authorAndjelkovic, Marko
dc.contributor.authorBreitenreiter, Anselm
dc.contributor.authorZeidler, Steffen
dc.contributor.authorBalashov, Alexey
dc.contributor.authorKrstic, Milos
dc.date.accessioned2022-03-03T12:44:50Z
dc.date.available2022-03-03T12:44:50Z
dc.date.issued2021
dc.description.abstractUse of a standard non-rad-hard digital cell library in the rad-hard design can be a cost-effective solution for space applications. In this paper we demonstrate how a standard non-rad-hard flip-flop, as one of the most vulnerable digital cells, can be converted into a rad-hard flip-flop without modifying its internal structure. We present five variants of a Triple Modular Redundancy (TMR) flip-flop: baseline TMR flip-flop, latch-based TMR flip-flop, True-Single Phase Clock (TSPC) TMR flip-flop, scannable TMR flip-flop and self-correcting TMR flip-flop. For all variants, the multi-bit upsets have been addressed by applying special placement constraints, while the Single Event Transient (SET) mitigation was achieved through the usage of customized SET filters and selection of optimal inverter sizes for the clock and reset trees. The proposed flip-flop variants feature differing performance, thus enabling to choose the optimal solution for every sensitive node in the circuit, according to the predefined design constraints. Several flip-flop designs have been validated on IHP’s 130nm BiCMOS process, by irradiation of custom-designed shift registers. It has been shown that the proposed TMR flip-flops are robust to soft errors with a threshold Linear Energy Transfer (LET) from ( 32.4 (MeV⋅cm2/mg) ) to ( 62.5 (MeV⋅cm2/mg) ), depending on the variant.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8131
dc.identifier.urihttps://doi.org/10.34657/7171
dc.language.isoengeng
dc.publisherNew York, NY : Institute of Electrical and Electronics Engineerseng
dc.relation.doihttps://doi.org/10.1109/TCSI.2021.3109080
dc.relation.essn1558-0806
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.ddc000eng
dc.subject.ddc620eng
dc.subject.otherASIC design floweng
dc.subject.otherClockseng
dc.subject.otherComputer architectureeng
dc.subject.otherfault toleranceeng
dc.subject.otherLibrarieseng
dc.subject.otherMicroprocessorseng
dc.subject.otherradhard designeng
dc.subject.otherRadiation hardening (electronics)eng
dc.subject.otherSingle event effecteng
dc.subject.otherStandardseng
dc.subject.otherTransistorseng
dc.subject.othertriple modular redundancyeng
dc.titleDesign and Evaluation of Radiation-Hardened Standard Cell Flip-Flopseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIHPeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Design_and_Evaluation_of_Radiation-Hardened.pdf
Size:
2.37 MB
Format:
Adobe Portable Document Format
Description: