FunMap: Efficient Execution of Functional Mappings for Knowledge Graph Creation

dc.bibliographicCitation.bookTitleThe Semantic Web – ISWC 2020eng
dc.bibliographicCitation.firstPage276eng
dc.bibliographicCitation.journalTitleLecture Notes in Computer Scienceeng
dc.bibliographicCitation.lastPage293eng
dc.contributor.authorJozashoori, Samaneh
dc.contributor.authorChaves-Fraga, David
dc.contributor.authorIglesias, Enrique
dc.contributor.authorVidal, Maria-Esther
dc.contributor.authorCorcho, Oscar
dc.contributor.editorPan, Jeff Z.
dc.contributor.editorTamma, Valentina
dc.contributor.editord'Amato, Claudia
dc.contributor.editorJanowicz, Kryztof
dc.contributor.editorFu, Bo
dc.contributor.editorPolleres, Axel
dc.contributor.editorSeneviratne, Oshani
dc.contributor.editorKagal, Lalana
dc.date.accessioned2021-06-08T07:28:11Z
dc.date.available2021-06-08T07:28:11Z
dc.date.issued2020
dc.description.abstractData has exponentially grown in the last years, and knowledge graphs constitute powerful formalisms to integrate a myriad of existing data sources. Transformation functions – specified with function-based mapping languages like FunUL and RML+FnO – can be applied to overcome interoperability issues across heterogeneous data sources. However, the absence of engines to efficiently execute these mapping languages hinders their global adoption. We propose FunMap, an interpreter of function-based mapping languages; it relies on a set of lossless rewriting rules to push down and materialize the execution of functions in initial steps of knowledge graph creation. Although applicable to any function-based mapping language that supports joins between mapping rules, FunMap feasibility is shown on RML+FnO. FunMap reduces data redundancy, e.g., duplicates and unused attributes, and converts RML+FnO mappings into a set of equivalent rules executable on RML-compliant engines. We evaluate FunMap performance over real-world testbeds from the biomedical domain. The results indicate that FunMap reduces the execution time of RML-compliant engines by up to a factor of 18, furnishing, thus, a scalable solution for knowledge graph creation.eng
dc.description.versionsubmittedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6187
dc.identifier.urihttps://doi.org/10.34657/5234
dc.language.isoengeng
dc.publisherCham : Springereng
dc.relation.doihttps://doi.org/10.1007/978-3-030-62419-4_16
dc.relation.essn1611-3349
dc.relation.isbn978-3-030-62418-7
dc.relation.isbn978-3-030-62419-4
dc.relation.issn0302-9743
dc.rights.licenseEs gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.eng
dc.subject.ddc020eng
dc.subject.gndKonferenzschriftger
dc.subject.otherKnowledge graph creationeng
dc.subject.otherMapping ruleseng
dc.subject.otherFunctionseng
dc.titleFunMap: Efficient Execution of Functional Mappings for Knowledge Graph Creationeng
dc.typeBookParteng
dc.typeTexteng
dcterms.event19th International Semantic Web Conference, Athens, Greece, November 2–6, 2020
tib.accessRightsopenAccesseng
wgl.contributorTIBeng
wgl.subjectInformatikeng
wgl.typeBuchkapitel / Sammelwerksbeitrageng
wgl.typeKonferenzbeitrageng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jozashoori2020, Preprint.pdf
Size:
3.64 MB
Format:
Adobe Portable Document Format
Description: