A climate network perspective on the intertropical convergence zone
dc.bibliographicCitation.firstPage | 353 | eng |
dc.bibliographicCitation.issue | 1 | eng |
dc.bibliographicCitation.journalTitle | Earth System Dynamics : ESD | eng |
dc.bibliographicCitation.lastPage | 366 | eng |
dc.bibliographicCitation.volume | 12 | eng |
dc.contributor.author | Wolf, Frederik | |
dc.contributor.author | Voigt, Aiko | |
dc.contributor.author | Donner, Reik V. | |
dc.date.accessioned | 2022-01-18T13:05:09Z | |
dc.date.available | 2022-01-18T13:05:09Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The intertropical convergence zone (ITCZ) is an important component of the tropical rain belt. Climate models continue to struggle to adequately represent the ITCZ and differ substantially in its simulated response to climate change. Here we employ complex network approaches, which extract spatiotemporal variability patterns from climate data, to better understand differences in the dynamics of the ITCZ in state-of-the-art global circulation models (GCMs). For this purpose, we study simulations with 14 GCMs in an idealized slab-ocean aquaplanet setup from TRACMIP – the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project. We construct network representations based on the spatial correlation patterns of monthly surface temperature anomalies and study the zonal-mean patterns of different topological and spatial network characteristics. Specifically, we cluster the GCMs by means of the distributions of their zonal network measures utilizing hierarchical clustering. We find that in the control simulation, the distributions of the zonal network measures are able to pick up model differences in the tropical sea surface temperature (SST) contrast, the ITCZ position, and the strength of the Southern Hemisphere Hadley cell. Although we do not find evidence for consistent modifications in the network structure tracing the response of the ITCZ to global warming in the considered model ensemble, our analysis demonstrates that coherent variations of the global SST field are linked to ITCZ dynamics. This suggests that climate networks can provide a new perspective on ITCZ dynamics and model differences therein. | eng |
dc.description.fonds | Leibniz_Fonds | |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/7847 | |
dc.identifier.uri | https://doi.org/10.34657/6888 | |
dc.language.iso | eng | eng |
dc.publisher | Göttingen : Copernicus Publ. | eng |
dc.relation.doi | https://doi.org/10.5194/esd-12-353-2021 | |
dc.relation.essn | 2190-4987 | |
dc.rights.license | CC BY 4.0 Unported | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | eng |
dc.subject.ddc | 550 | eng |
dc.subject.other | Atmospheric temperature | eng |
dc.subject.other | Belts | eng |
dc.subject.other | Complex networks | eng |
dc.subject.other | Dynamics | eng |
dc.subject.other | Global warming | eng |
dc.subject.other | Hierarchical clustering | eng |
dc.subject.other | Oceanography | eng |
dc.subject.other | Rain | eng |
dc.subject.other | Surface | eng |
dc.subject.other | Surface properties | eng |
dc.subject.other | Surface waters | eng |
dc.subject.other | Tropics | eng |
dc.subject.other | Global circulation model | eng |
dc.subject.other | Intertropical convergence zone | eng |
dc.subject.other | Model inter comparisons | eng |
dc.subject.other | Network representation | eng |
dc.subject.other | Sea surface temperature (SST) | eng |
dc.subject.other | Spatial correlations | eng |
dc.subject.other | Spatiotemporal variability | eng |
dc.subject.other | Surface temperature anomalies | eng |
dc.subject.other | Climate models | eng |
dc.subject.other | air-sea interaction | eng |
dc.subject.other | climate modeling | eng |
dc.subject.other | Hadley cell | eng |
dc.subject.other | intertropical convergence zone | eng |
dc.subject.other | sea surface temperature | eng |
dc.subject.other | Southern Hemisphere | eng |
dc.subject.other | spatiotemporal analysis | eng |
dc.subject.other | surface temperature | eng |
dc.subject.other | warming | eng |
dc.title | A climate network perspective on the intertropical convergence zone | eng |
dc.type | Article | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | PIK | eng |
wgl.contributor | TROPOS | eng |
wgl.subject | Geowissenschaften | eng |
wgl.type | Zeitschriftenartikel | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A climate network perspective on the intertropical convergence zone.pdf
- Size:
- 2.46 MB
- Format:
- Adobe Portable Document Format
- Description: