Emergence of novel methicillin resistant Staphylococcus aureus strains in a tertiary care facility in Tiyadh, Saudi Arabia

dc.bibliographicCitation.firstPage2739eng
dc.bibliographicCitation.volume12eng
dc.contributor.authorSenok, Abiola
dc.contributor.authorSomili, Ali M.
dc.contributor.authorNassar, Rania
dc.contributor.authorGaraween, Ghada
dc.contributor.authorKim Sing, Garwin
dc.contributor.authorMüller, Elke
dc.contributor.authorReißig, Annett
dc.contributor.authorGawlik, Darius
dc.contributor.authorEhricht, Ralf
dc.contributor.authorMonecke, Stefan
dc.date.accessioned2020-01-03T12:17:58Z
dc.date.available2020-01-03T12:17:58Z
dc.date.issued2019
dc.description.abstractPurpose: There is a need for continuous surveillance of methicillin-resistant Staphylococcus aureus (MRSA) to identify emergence of new strains. We hypothesize that MRSA strains are evolving with ongoing acquisition of SCCmec elements. This study was carried out to evaluate the evolution of MRSA at a tertiary care facility in Saudi Arabia. Methods: MRSA isolates associated with invasive clinical infection, which were identified in 2017 at the microbiology laboratory, King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia, were studied. The molecular characterization of isolates was carried out using StaphyType DNA microarray (Alere Technologies GmbH/Abbott, Jena, Germany). Results: The 125 MRSA isolates studied belonged to 18 clonal complexes (CC) which were distributed into 32 strain assignments. The predominant CC were CC5 (n=30), CC6 (n=17), CC80 (n=13), CC22 (n=12), CC361 (n=12). The findings demonstrated the first identification of CC152, CC361 and CC1153 MRSA as well as ST5-MRSA-[I+fus], “Geraldine Clone”, CC6-MRSA-IV (PVL+) and CC88-MRSA-V (PVL+), WA MRSA-117 in Saudi Arabia. Four novel variants were identified: CC5-MRSA-[VI+fus+tirS], CC22-MRSA-[V/VT+fus](PVL+), CC152-MRSA-[V+fus](PVL+) and CC361-MRSA-[VT+fus]. Fifty-four isolates (n/N=54/125; 43.2%) including the novel strains carried the Q6GD50 SCCfusC gene while the Panton-Valentine leukocidin genes were present in 30.4% (n/N=38/125). Conclusion: The findings demonstrate an expanding MRSA repertoire in our setting including emergence of previously unreported clonal complexes and novel strains. The high carriage of fusC gene suggests a role for fusidic acid misuse in driving the evolution of the MRSA genome and underscores the need for increased monitoring of antibiotic use.Purpose: There is a need for continuous surveillance of methicillin-resistant Staphylococcus aureus (MRSA) to identify emergence of new strains. We hypothesize that MRSA strains are evolving with ongoing acquisition of SCCmec elements. This study was carried out to evaluate the evolution of MRSA at a tertiary care facility in Saudi Arabia. Methods: MRSA isolates associated with invasive clinical infection, which were identified in 2017 at the microbiology laboratory, King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia, were studied. The molecular characterization of isolates was carried out using StaphyType DNA microarray (Alere Technologies GmbH/Abbott, Jena, Germany). Results: The 125 MRSA isolates studied belonged to 18 clonal complexes (CC) which were distributed into 32 strain assignments. The predominant CC were CC5 (n=30), CC6 (n=17), CC80 (n=13), CC22 (n=12), CC361 (n=12). The findings demonstrated the first identification of CC152, CC361 and CC1153 MRSA as well as ST5-MRSA-[I+fus], “Geraldine Clone”, CC6-MRSA-IV (PVL+) and CC88-MRSA-V (PVL+), WA MRSA-117 in Saudi Arabia. Four novel variants were identified: CC5-MRSA-[VI+fus+tirS], CC22-MRSA-[V/VT+fus](PVL+), CC152-MRSA-[V+fus](PVL+) and CC361-MRSA-[VT+fus]. Fifty-four isolates (n/N=54/125; 43.2%) including the novel strains carried the Q6GD50 SCCfusC gene while the Panton-Valentine leukocidin genes were present in 30.4% (n/N=38/125). Conclusion: The findings demonstrate an expanding MRSA repertoire in our setting including emergence of previously unreported clonal complexes and novel strains. The high carriage of fusC gene suggests a role for fusidic acid misuse in driving the evolution of the MRSA genome and underscores the need for increased monitoring of antibiotic use.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/54
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4783
dc.language.isoengeng
dc.publisherMacclesfield, UK : Dove Medical Presseng
dc.relation.doihttps://doi.org/10.2147/IDR.S218870
dc.relation.ispartofseriesInfection and Drug Resistance 12 (2019)eng
dc.rights.licenseCC BY-NC 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/eng
dc.subjectDNA microarrayeng
dc.subjectfusidic acideng
dc.subjectclonal complexeng
dc.subjectpanton-valentine leukocidineng
dc.subject.ddc610eng
dc.titleEmergence of novel methicillin resistant Staphylococcus aureus strains in a tertiary care facility in Tiyadh, Saudi Arabiaeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleInfection and Drug Resistanceeng
tib.accessRightsopenAccesseng
wgl.contributorIPHTeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Emergence of novel methicillin-resistant Staphylococcus aureus.pdf
Size:
275.89 KB
Format:
Adobe Portable Document Format
Description: