Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications

dc.bibliographicCitation.firstPage180
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.lastPage194
dc.bibliographicCitation.volume61
dc.contributor.authorWiegner, M.
dc.contributor.authorGasteiger, J.
dc.contributor.authorKandler, K.
dc.contributor.authorWeinzierl, B.
dc.contributor.authorRasp, K.
dc.contributor.authorEsselborn, M.
dc.contributor.authorFreudenthaler, V.
dc.contributor.authorHeese, B.
dc.contributor.authorToledano, C.
dc.contributor.authorTesche, M.
dc.contributor.authorAlthausen, D.
dc.date.accessioned2018-02-07T04:38:29Z
dc.date.available2019-06-26T17:17:05Z
dc.date.issued2017
dc.description.abstractIn the framework of the Saharan Mineral Dust Experiment (SAMUM) for the first time the spectral dependence of particle linear depolarization ratios was measured by combining four lidar systems. In this paper these measurements are compared with results from scattering theory based on the T-matrix method. For this purpose, in situ measurements—size distribution, shape distribution and refractive index—were used as input parameters; particle shape was approximated by spheroids. A sensitivity study showed that lidar-related parameters—lidar ratio Sp and linear depolarization ratio δp—are very sensitive to changes of all parameters. The simulated values of the δp are in the range of 20% and 31% and thus in the range of the measurements. The spectral dependence is weak, so that it could not be resolved by the measurements. Calculated lidar ratios based on the measured microphysics and considering equivalent radii up to 7.5μm show a range of possible values between 29 and 50 sr at λ = 532 nm. Larger Sp might be possible if the real part of the refractive index is small and the imaginary part is large. A strict validation was however not possible as too many microphysical parameters influence Sp and δp that could not be measured with the required accuracy.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/1138
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/280
dc.language.isoengeng
dc.publisherMilton Park : Taylor & Franciseng
dc.relation.doihttps://doi.org/10.1111/j.1600-0889.2008.00381.x
dc.relation.ispartofseriesTellus B: Chemical and Physical Meteorology, Volume 61, Issue 1, Page 180-194eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectaccuracy assessmenteng
dc.subjectaerosoleng
dc.subjectcomputer simulationeng
dc.subjectdusteng
dc.subjectgeometryeng
dc.subjectin situ measurementeng
dc.subjectlidareng
dc.subjectnumerical modeleng
dc.subjectparameterizationeng
dc.subjectparticle sizeeng
dc.subjectrefractive indexeng
dc.subjectsize distributioneng
dc.subjectspatial distributioneng
dc.subjectspectral analysiseng
dc.subject.ddc550eng
dc.titleNumerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applicationseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleTellus B: Chemical and Physical Meteorologyeng
tib.accessRightsopenAccesseng
wgl.contributorTROPOSeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
j.1600-0889.2008.00381.pdf
Size:
643.34 KB
Format:
Adobe Portable Document Format
Description: