Clustering Semantic Predicates in the Open Research Knowledge Graph
dc.bibliographicCitation.bookTitle | From Born-Physical to Born-Virtual: Augmenting Intelligence in Digital Libraries : 24th International Conference on Asian Digital Libraries, ICADL 2022, Hanoi, Vietnam, November 30 – December 2, 2022, Proceedings | |
dc.bibliographicCitation.date | 2022 | |
dc.bibliographicCitation.firstPage | 477 | |
dc.bibliographicCitation.lastPage | 484 | |
dc.bibliographicCitation.seriesTitle | Lecture Notes in Computer Science ; 13636 | eng |
dc.bibliographicCitation.volume | 13636 | |
dc.contributor.author | Arab Oghli, Omar | |
dc.contributor.author | D’Souza, Jennifer | |
dc.contributor.author | Auer, Sören | |
dc.date.accessioned | 2024-05-10T05:24:23Z | |
dc.date.available | 2024-05-10T05:24:23Z | |
dc.date.issued | 2022 | |
dc.description.abstract | When semantically describing knowledge graphs (KGs), users have to make a critical choice of a vocabulary (i.e. predicates and resources). The success of KG building is determined by the convergence of shared vocabularies so that meaning can be established. The typical lifecycle for a new KG construction can be defined as follows: nascent phases of graph construction experience terminology divergence, while later phases of graph construction experience terminology convergence and reuse. In this paper, we describe our approach tailoring two AI-based clustering algorithms for recommending predicates (in RDF statements) about resources in the Open Research Knowledge Graph (ORKG) https://orkg.org/. Such a service to recommend existing predicates to semantify new incoming data of scholarly publications is of paramount importance for fostering terminology convergence in the ORKG. Our experiments show very promising results: a high precision with relatively high recall in linear runtime performance. Furthermore, this work offers novel insights into the predicate groups that automatically accrue loosely as generic semantification patterns for semantification of scholarly knowledge spanning 44 research fields. | eng |
dc.description.version | acceptedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/14590 | |
dc.identifier.uri | https://doi.org/10.34657/13621 | |
dc.language.iso | eng | |
dc.publisher | Heidelberg : Springer | |
dc.relation.doi | https://doi.org/10.1007/978-3-031-21756-2_39 | |
dc.relation.essn | 1611-3349 | |
dc.relation.issn | 0302-9743 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed on other websites via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht auf anderen Webseiten im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 004 | |
dc.subject.gnd | Konferenzschrift | ger |
dc.subject.other | Artificial intelligence | eng |
dc.subject.other | Clustering algorithms | eng |
dc.subject.other | Content-based recommender systems | eng |
dc.subject.other | Open research knowledge graph | eng |
dc.title | Clustering Semantic Predicates in the Open Research Knowledge Graph | eng |
dc.type | BookPart | eng |
dc.type | Text | eng |
dcterms.event | 24th International Conference on Asia-Pacific Digital Libraries, ICADL 2022, 30 November 2022-2 December 2022, Hanoi | |
tib.accessRights | openAccess | |
wgl.contributor | TIB | |
wgl.subject | Informatik | ger |
wgl.type | Buchkapitel / Sammelwerksbeitrag | ger |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Clustering_Semantic_Predicates.pdf
- Size:
- 570.92 KB
- Format:
- Adobe Portable Document Format
- Description: