Optimal decentralized distributed algorithms for stochastic convex optimization

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2691
dc.contributor.authorGorbunov, Eduard
dc.contributor.authorDvinskikh, Darina
dc.contributor.authorGasnikov, Alexander
dc.date.accessioned2022-06-30T12:42:34Z
dc.date.available2022-06-30T12:42:34Z
dc.date.issued2020
dc.description.abstractWe consider stochastic convex optimization problems with affine constraints and develop several methods using either primal or dual approach to solve it. In the primal case we use special penalization technique to make the initial problem more convenient for using optimization methods. We propose algorithms to solve it based on Similar Triangles Method with Inexact Proximal Step for the convex smooth and strongly convex smooth objective functions and methods based on Gradient Sliding algorithm to solve the same problems in the non-smooth case. We prove the convergence guarantees in smooth convex case with deterministic first-order oracle. We propose and analyze three novel methods to handle stochastic convex optimization problems with affine constraints: SPDSTM, R-RRMA-AC-SA and SSTM_sc. All methods use stochastic dual oracle. SPDSTM is the stochastic primal-dual modification of STM and it is applied for the dual problem when the primal functional is strongly convex and Lipschitz continuous on some ball. R-RRMA-AC-SA is an accelerated stochastic method based on the restarts of RRMA-AC-SA and SSTM_sc is just stochastic STM for strongly convex problems. Both methods are applied to the dual problem when the primal functional is strongly convex, smooth and Lipschitz continuous on some ball and use stochastic dual first-order oracle. We develop convergence analysis for these methods for the unbiased and biased oracles respectively. Finally, we apply all aforementioned results and approaches to solve decentralized distributed optimization problem and discuss optimality of the obtained results in terms of communication rounds and number of oracle calls per node.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9341
dc.identifier.urihttps://doi.org/10.34657/8379
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2691
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherConvex optimizationeng
dc.subject.otherstochastic optimizationeng
dc.subject.otherprimal and dual methodseng
dc.subject.otherdistributed methodseng
dc.subject.otherdecentralized algorithmseng
dc.subject.otherfirst-order methodseng
dc.subject.otheroptimal complexity boundseng
dc.subject.othermini-batcheng
dc.titleOptimal decentralized distributed algorithms for stochastic convex optimizationeng
dc.typeReporteng
dc.typeTexteng
dcterms.extent76 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2691.pdf
Size:
650.17 KB
Format:
Adobe Portable Document Format
Description: