Nanoimprint Lithography Facilitated Plasmonic-Photonic Coupling for Enhanced Photoconductivity and Photocatalysis

dc.bibliographicCitation.firstPage2105054eng
dc.bibliographicCitation.issue36eng
dc.bibliographicCitation.volume31eng
dc.contributor.authorGupta, Vaibhav
dc.contributor.authorSarkar, Swagato
dc.contributor.authorAftenieva, Olha
dc.contributor.authorTsuda, Takuya
dc.contributor.authorKumar, Labeesh
dc.contributor.authorSchletz, Daniel
dc.contributor.authorSchultz, Johannes
dc.contributor.authorKiriy, Anton
dc.contributor.authorFery, Andreas
dc.contributor.authorVogel, Nicolas
dc.contributor.authorKönig, Tobias A.F.
dc.date.accessioned2021-11-25T13:21:51Z
dc.date.available2021-11-25T13:21:51Z
dc.date.issued2021
dc.description.abstractImprint lithography has emerged as a reliable, reproducible, and rapid method for patterning colloidal nanostructures. As a promising alternative to top-down lithographic approaches, the fabrication of nanodevices has thus become effective and straightforward. In this study, a fusion of interference lithography (IL) and nanosphere imprint lithography on various target substrates ranging from carbon film on transmission electron microscope grid to inorganic and dopable polymer semiconductor is reported. 1D plasmonic photonic crystals are printed with 75% yield on the centimeter scale using colloidal ink and an IL-produced polydimethylsiloxane stamp. Atomically smooth facet, single-crystalline, and monodisperse colloidal building blocks of gold (Au) nanoparticles are used to print 1D plasmonic grating on top of a titanium dioxide (TiO2) slab waveguide, producing waveguide-plasmon polariton modes with superior 10 nm spectral line-width. Plasmon-induced hot electrons are confirmed via two-terminal current measurements with increased photoresponsivity under guiding conditions. The fabricated hybrid structure with Au/TiO2 heterojunction enhances photocatalytic processes like degradation of methyl orange (MO) dye molecules using the generated hot electrons. This simple colloidal printing technique demonstrated on silicon, glass, Au film, and naphthalenediimide polymer thus marks an important milestone for large-scale implementation in optoelectronic devices. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbHeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7498
dc.identifier.urihttps://doi.org/10.34657/6545
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/adfm.202105054
dc.relation.essn1099-0712
dc.relation.essn1616-3028
dc.relation.ispartofseriesAdvanced Functional Materials 31 (2021), Nr. 36eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectcolloidal nanosphereseng
dc.subjectnanoimprint lithographyeng
dc.subjectphotocatalysiseng
dc.subjectplasmon-induced charge transfereng
dc.subjectwaveguide-plasmon polaritoneng
dc.subject.ddc620eng
dc.subject.ddc540eng
dc.subject.ddc530eng
dc.titleNanoimprint Lithography Facilitated Plasmonic-Photonic Coupling for Enhanced Photoconductivity and Photocatalysiseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAdvanced Functional Materialseng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adfm.202105054.pdf
Size:
3.29 MB
Format:
Adobe Portable Document Format
Description: