Semitensor Product Compressive Sensing for Big Data Transmission in Wireless Sensor Networks

dc.bibliographicCitation.firstPage8158465eng
dc.bibliographicCitation.journalTitleMathematical Problems in Engineeringeng
dc.bibliographicCitation.volume2017eng
dc.contributor.authorPeng, H.
dc.contributor.authorTian, Y.
dc.contributor.authorKurths, J.
dc.date.accessioned2020-07-27T12:26:29Z
dc.date.available2020-07-27T12:26:29Z
dc.date.issued2017
dc.description.abstractBig data transmission in wireless sensor network (WSN) consumes energy while the node in WSN is energy-limited, and the data transmitted needs to be encrypted resulting from the ease of being eavesdropped in WSN links. Compressive sensing (CS) can encrypt data and reduce the data volume to solve these two problems. However, the nodes in WSNs are not only energy-limited, but also storage and calculation resource-constrained. The traditional CS uses the measurement matrix as the secret key, which consumes a huge storage space. Moreover, the calculation cost of the traditional CS is large. In this paper, semitensor product compressive sensing (STP-CS) is proposed, which reduces the size of the secret key to save the storage space by breaking through the dimension match restriction of the matrix multiplication and decreases the calculation amount to save the calculation resource. Simulation results show that STP-CS encryption can achieve better performances of saving storage and calculation resources compared with the traditional CS encryption.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3742
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5113
dc.language.isoengeng
dc.publisherLondon : Hindawi Limitedeng
dc.relation.doihttps://doi.org/10.1155/2017/8158465
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc620eng
dc.subject.otherCompressed sensingeng
dc.subject.otherCryptographyeng
dc.subject.otherData communication systemseng
dc.subject.otherData transfereng
dc.subject.otherDigital storageeng
dc.subject.otherMatrix algebraeng
dc.subject.otherSensor nodeseng
dc.subject.otherSignal reconstructioneng
dc.subject.otherWireless sensor networkseng
dc.subject.otherCalculation costeng
dc.subject.otherCompressive sensingeng
dc.subject.otherData volumeeng
dc.subject.otherMAtrix multiplicationeng
dc.subject.otherMeasurement matrixeng
dc.subject.otherSecret keyeng
dc.subject.otherSemi-tensor producteng
dc.subject.otherStorage spaceseng
dc.subject.otherBig dataeng
dc.titleSemitensor Product Compressive Sensing for Big Data Transmission in Wireless Sensor Networkseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPIKeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Peng et al 2017, Semitensor Product Compressive Sensing.pdf
Size:
2.71 MB
Format:
Adobe Portable Document Format
Description: