Bacteriomimetic Liposomes Improve Antibiotic Activity of a Novel Energy-Coupling Factor Transporter Inhibitor

dc.bibliographicCitation.firstPage4eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.volume14eng
dc.contributor.authorDrost, Menka
dc.contributor.authorDiamanti, Eleonora
dc.contributor.authorFuhrmann, Kathrin
dc.contributor.authorGoes, Adriely
dc.contributor.authorShams, Atanaz
dc.contributor.authorHaupenthal, Jörg
dc.contributor.authorKoch, Marcus
dc.contributor.authorHirsch, Anna K. H.
dc.contributor.authorFuhrmann, Gregor
dc.date.accessioned2022-07-14T06:57:11Z
dc.date.available2022-07-14T06:57:11Z
dc.date.issued2021
dc.description.abstractLiposomes have been studied for decades as nanoparticulate drug delivery systems for cytostatics, and more recently, for antibiotics. Such nanoantibiotics show improved antibacterial efficacy compared to the free drug and can be effective despite bacterial recalcitrance. In this work, we present a loading method of bacteriomimetic liposomes for a novel, hydrophobic compound (HIPS5031) inhibiting energy-coupling factor transporters (ECF transporters), an underexplored antimicrobial target. The liposomes were composed of DOPG (18:1 (Δ9-cis) phosphatidylglycerol) and CL (cardiolipin), resembling the cell membrane of Gram-positive Staphylococcus aureus and Streptococcus pneumoniae, and enriched with cholesterol (Chol). The size and polydispersity of the DOPG/CL/± Chol liposomes remained stable over 8 weeks when stored at 4 °C. Loading of the ECF transporter inhibitor was achieved by thin film hydration and led to a high encapsulation efficiency of 33.19% ± 9.5% into the DOPG/CL/Chol liposomes compared to the phosphatidylcholine liposomes (DMPC/DPPC). Bacterial growth inhibition assays on the model organism Bacillus subtilis revealed liposomal HIPS5031 as superior to the free drug, showing a 3.5-fold reduction in CFU/mL at a concentration of 9.64 µM. Liposomal HIPS5031 was also shown to reduce B. subtilis biofilm. Our findings present an explorative basis for bacteriomimetic liposomes as a strategy against drug-resistant pathogens by surpassing the drug-formulation barriers of innovative, yet unfavorably hydrophobic, antibiotics.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9735
dc.identifier.urihttps://doi.org/10.34657/8772
dc.language.isoengeng
dc.publisherBasel : MDPIeng
dc.relation.doihttps://doi.org/10.3390/pharmaceutics14010004
dc.relation.essn1999-4923
dc.relation.ispartofseriesPharmaceutics 14 (2022), Nr. 1eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectAntibiotic resistanceeng
dc.subjectBacillus subtiliseng
dc.subjectBacteriomimeticeng
dc.subjectCardiolipineng
dc.subjectEnergy-coupling factor (ECF) transporterseng
dc.subjectLiposomeseng
dc.subjectNanoantibioticseng
dc.subject.ddc610eng
dc.titleBacteriomimetic Liposomes Improve Antibiotic Activity of a Novel Energy-Coupling Factor Transporter Inhibitoreng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitlePharmaceuticseng
tib.accessRightsopenAccesseng
wgl.contributorINMeng
wgl.subjectMedizin, Gesundheiteng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bacteriomimetic_Liposomes_Improve.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format
Description:
Collections