Two types of magnetic shape-memory effects from twinned microstructure and magneto-structural coupling in Fe1 +yTe

dc.bibliographicCitation.firstPage16697eng
dc.bibliographicCitation.issue34eng
dc.bibliographicCitation.volume116eng
dc.contributor.authorRößler, S.
dc.contributor.authorKoz, C.
dc.contributor.authorWang, Z.
dc.contributor.authorSkourski, Y.
dc.contributor.authorDoerr, M.
dc.contributor.authorKasinathan, D.
dc.contributor.authorRosner, H.
dc.contributor.authorSchmidt, M.
dc.contributor.authorSchwarz, U.
dc.contributor.authorRößler, U.K.
dc.contributor.authorWirth, S.
dc.date.accessioned2020-07-18T06:12:41Z
dc.date.available2020-07-18T06:12:41Z
dc.date.issued2019
dc.description.abstractA detailed experimental investigation of Fe1+yTe (y = 0.11, 0.12) using pulsed magnetic fields up to 60 T confirms remarkable magnetic shape-memory (MSM) effects. These effects result from magnetoelastic transformation processes in the low-temperature antiferromagnetic state of these materials. The observation of modulated and finely twinned microstructure at the nanoscale through scanning tunneling microscopy establishes a behavior similar to that of thermoelastic martensite. We identified the observed, elegant hierarchical twinning pattern of monoclinic crystallographic domains as an ideal realization of crossing twin bands. The antiferromagnetism of the monoclinic ground state allows for a magnetic-field–induced reorientation of these twin variants by the motion of one type of twin boundaries. At sufficiently high magnetic fields, we observed a second isothermal transformation process with large hysteresis for different directions of applied field. This gives rise to a second MSM effect caused by a phase transition back to the field-polarized tetragonal lattice state.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3635
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5006
dc.language.isoengeng
dc.publisherWashington : National Academy of Scienceseng
dc.relation.doihttps://doi.org/10.1073/pnas.1905271116
dc.relation.ispartofseriesProceedings of the National Academy of Sciences of the United States of America 116 (2019), 34eng
dc.relation.issn0027-8424
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subjectAntiferromagnetseng
dc.subjectFe-chalcogenideseng
dc.subjectMagnetic shape-memory effecteng
dc.subjectferromagnetic materialeng
dc.subjectArticleeng
dc.subjectchemical analysiseng
dc.subjectchemical reactioneng
dc.subjectchemical structureeng
dc.subjectcoupling factoreng
dc.subjectcrystallographyeng
dc.subjectelasticityeng
dc.subjecthysteresiseng
dc.subjectisothermeng
dc.subjectmagnetic fieldeng
dc.subjectmagnetic shape memoryeng
dc.subjectmagnetismeng
dc.subjectmemoryeng
dc.subjectmolecular interactioneng
dc.subjectphase transitioneng
dc.subjectpolarizationeng
dc.subjectpriority journaleng
dc.subjectstructure analysiseng
dc.subjectsynthesiseng
dc.subject.ddc530eng
dc.titleTwo types of magnetic shape-memory effects from twinned microstructure and magneto-structural coupling in Fe1 +yTeeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleProceedings of the National Academy of Sciences of the United States of Americaeng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rößler et al 2019, Two types of magnetic shape-memory effects from twinned.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format
Description:
Collections