Self-Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitors

dc.bibliographicCitation.firstPage1901051eng
dc.bibliographicCitation.issue20eng
dc.bibliographicCitation.journalTitleAdvanced Scienceeng
dc.bibliographicCitation.lastPage34496eng
dc.bibliographicCitation.volume6eng
dc.contributor.authorLi, F.
dc.contributor.authorWang, J.
dc.contributor.authorLiu, L.
dc.contributor.authorQu, J.
dc.contributor.authorLi, Y.
dc.contributor.authorBandari, V.K.
dc.contributor.authorKarnaushenko, D.
dc.contributor.authorBecker, C.
dc.contributor.authorFaghih, M.
dc.contributor.authorKang, T.
dc.contributor.authorBaunack, S.
dc.contributor.authorZhu, M.
dc.contributor.authorZhu, F.
dc.contributor.authorSchmidt, O.G.
dc.date.accessioned2020-07-18T06:12:34Z
dc.date.available2020-07-18T06:12:34Z
dc.date.issued2019
dc.description.abstractThe rapid development of microelectronics has equally rapidly increased the demand for miniaturized energy storage devices. On-chip microsupercapacitors (MSCs), as promising power candidates, possess great potential to complement or replace electrolytic capacitors and microbatteries in various applications. However, the areal capacities and energy densities of the planar MSCs are commonly limited by the low voltage window, the thin layer of the electrode materials and complex fabrication processes. Here, a new-type three-dimensional (3D) tubular asymmetric MSC with small footprint area, high potential window, ultrahigh areal energy density, and long-term cycling stability is fabricated with shapeable materials and photolithographic technologies, which are compatible with modern microelectronic fabrication procedures widely used in industry. Benefiting from the novel architecture, the 3D asymmetric MSC displays an ultrahigh areal capacitance of 88.6 mF cm−2 and areal energy density of 28.69 mW h cm−2, superior to most reported interdigitated MSCs. Furthermore, the 3D tubular MSCs demonstrate remarkable cycling stability and the capacitance retention is up to 91.8% over 12 000 cycles. It is believed that the efficient fabrication methodology can be used to construct various integratable microscale tubular energy storage devices with small footprint area and high performance for miniaturized electronics.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3590
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4961
dc.language.isoengeng
dc.publisherChichester : John Wiley and Sons Ltdeng
dc.relation.doihttps://doi.org/10.1002/advs.201901051
dc.relation.issn2198-3844
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.other3D microtubular architectureeng
dc.subject.otherfootprintseng
dc.subject.otherintegrated deviceseng
dc.subject.othermicrosupercapacitorseng
dc.subject.otherrolled-up nanotechnologyeng
dc.subject.otherCapacitanceeng
dc.subject.otherEnergy storageeng
dc.subject.otherFabricationeng
dc.subject.otherFlowchartingeng
dc.subject.otherMicroelectronic processingeng
dc.subject.otherMicroelectronicseng
dc.subject.otherSupercapacitoreng
dc.subject.otherAsymmetric supercapacitoreng
dc.subject.otherFabrication methodologyeng
dc.subject.otherfootprintseng
dc.subject.otherIntegrated deviceeng
dc.subject.otherMicro-tubulareng
dc.subject.otherMicrosupercapacitorseng
dc.subject.otherMiniaturized electronicseng
dc.subject.otherModern microelectronicseng
dc.subject.otherElectrolytic capacitorseng
dc.titleSelf-Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitorseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Li et al 2019, Self‐Assembled Flexible and Integratable 3D Microtubular.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
Description:
Collections