Self-Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitors

dc.bibliographicCitation.firstPage1901051eng
dc.bibliographicCitation.issue20eng
dc.bibliographicCitation.lastPage34496eng
dc.bibliographicCitation.volume6eng
dc.contributor.authorLi, F.
dc.contributor.authorWang, J.
dc.contributor.authorLiu, L.
dc.contributor.authorQu, J.
dc.contributor.authorLi, Y.
dc.contributor.authorBandari, V.K.
dc.contributor.authorKarnaushenko, D.
dc.contributor.authorBecker, C.
dc.contributor.authorFaghih, M.
dc.contributor.authorKang, T.
dc.contributor.authorBaunack, S.
dc.contributor.authorZhu, M.
dc.contributor.authorZhu, F.
dc.contributor.authorSchmidt, O.G.
dc.date.accessioned2020-07-18T06:12:34Z
dc.date.available2020-07-18T06:12:34Z
dc.date.issued2019
dc.description.abstractThe rapid development of microelectronics has equally rapidly increased the demand for miniaturized energy storage devices. On-chip microsupercapacitors (MSCs), as promising power candidates, possess great potential to complement or replace electrolytic capacitors and microbatteries in various applications. However, the areal capacities and energy densities of the planar MSCs are commonly limited by the low voltage window, the thin layer of the electrode materials and complex fabrication processes. Here, a new-type three-dimensional (3D) tubular asymmetric MSC with small footprint area, high potential window, ultrahigh areal energy density, and long-term cycling stability is fabricated with shapeable materials and photolithographic technologies, which are compatible with modern microelectronic fabrication procedures widely used in industry. Benefiting from the novel architecture, the 3D asymmetric MSC displays an ultrahigh areal capacitance of 88.6 mF cm−2 and areal energy density of 28.69 mW h cm−2, superior to most reported interdigitated MSCs. Furthermore, the 3D tubular MSCs demonstrate remarkable cycling stability and the capacitance retention is up to 91.8% over 12 000 cycles. It is believed that the efficient fabrication methodology can be used to construct various integratable microscale tubular energy storage devices with small footprint area and high performance for miniaturized electronics.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3590
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4961
dc.language.isoengeng
dc.publisherChichester : John Wiley and Sons Ltdeng
dc.relation.doihttps://doi.org/10.1002/advs.201901051
dc.relation.ispartofseriesAdvanced Science 6 (2019), 20eng
dc.relation.issn2198-3844
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject3D microtubular architectureeng
dc.subjectfootprintseng
dc.subjectintegrated deviceseng
dc.subjectmicrosupercapacitorseng
dc.subjectrolled-up nanotechnologyeng
dc.subjectCapacitanceeng
dc.subjectEnergy storageeng
dc.subjectFabricationeng
dc.subjectFlowchartingeng
dc.subjectMicroelectronic processingeng
dc.subjectMicroelectronicseng
dc.subjectSupercapacitoreng
dc.subjectAsymmetric supercapacitoreng
dc.subjectFabrication methodologyeng
dc.subjectfootprintseng
dc.subjectIntegrated deviceeng
dc.subjectMicro-tubulareng
dc.subjectMicrosupercapacitorseng
dc.subjectMiniaturized electronicseng
dc.subjectModern microelectronicseng
dc.subjectElectrolytic capacitorseng
dc.subject.ddc530eng
dc.titleSelf-Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitorseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAdvanced Scienceeng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Li et al 2019, Self‐Assembled Flexible and Integratable 3D Microtubular.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
Description:
Collections