Mo-La2O3 multilayer metallization systems for high temperature surface acoustic wave sensor devices

dc.bibliographicCitation.firstPage2651eng
dc.bibliographicCitation.issue7eng
dc.bibliographicCitation.lastPage679eng
dc.bibliographicCitation.volume12eng
dc.contributor.authorMenzel, S.B.
dc.contributor.authorSeifert, M.
dc.contributor.authorPriyadarshi, A.
dc.contributor.authorRane, G.K.
dc.contributor.authorPark, E.
dc.contributor.authorOswald, S.
dc.contributor.authorGemming, T.
dc.date.accessioned2020-07-18T06:12:38Z
dc.date.available2020-07-18T06:12:38Z
dc.date.issued2019
dc.description.abstractDeveloping advanced thin film materials is the key challenge in high-temperature applications of surface acoustic wave sensor devices. One hundred nanometer thick (Mo-La2O3) multilayer systems were fabricated at room temperature on thermally oxidized (100) Si substrates (SiO2/Si) to study the effect of lanthanum oxide on the electrical resistivity of molybdenum thin films and their high-temperature stability. The multilayer systems were deposited by the magnetron sputter deposition of extremely thin (≤1 nm) La interlayers in between adjacent Mo layers. After deposition of each La layer the process was interrupted for 25 to 60 min to oxidize the La using the residual oxygen in the high vacuum of the deposition chamber. The samples were annealed at 800 °C in high vacuum for up to 120 h. In case of a 1 nm thick La interlayer in-between the Mo a continuous layer of La2O3 is formed. For thinner La layers an interlayer between adjacent Mo layers is observed consisting of a (La2O3-Mo) mixed structure of molybdenum and nm-sized lanthanum oxide particles. Measurements show that the (Mo-La2O3) multilayer systems on SiO2/Si substrates are stable at least up to 800 °C for 120 h in high vacuum conditions.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3613
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4984
dc.language.isoengeng
dc.publisherBasel : MDPI AGeng
dc.relation.doihttps://doi.org/10.3390/ma12172651
dc.relation.ispartofseriesMaterials 12 (2019), Nr. 7eng
dc.relation.issn1996-1944
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectDispersion strengtheningeng
dc.subjectHigh-temperature stabilityeng
dc.subjectInterdigital transducer materialeng
dc.subjectMo-La2O3 multilayerseng
dc.subjectSAW sensorseng
dc.subjectAcoustic surface wave deviceseng
dc.subjectAcoustic waveseng
dc.subjectDepositioneng
dc.subjectFilm preparationeng
dc.subjectHigh temperature applicationseng
dc.subjectLanthanum oxideseng
dc.subjectMultilayer filmseng
dc.subjectOxide filmseng
dc.subjectSilicaeng
dc.subjectThermodynamic stabilityeng
dc.subjectUltrasonic transducerseng
dc.subjectDeposition chamberseng
dc.subjectDispersion strengtheningeng
dc.subjectHigh temperature stabilityeng
dc.subjectHigh-vacuum conditionseng
dc.subjectInterdigital transducereng
dc.subjectMetallization systemseng
dc.subjectSAW sensorseng
dc.subjectSurface acoustic wave sensorseng
dc.subjectMultilayerseng
dc.subject.ddc620eng
dc.titleMo-La2O3 multilayer metallization systems for high temperature surface acoustic wave sensor deviceseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleMaterialseng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Menzel et al 2019, Mo-La2O3 Multilayer Metallization Systems.pdf
Size:
7.49 MB
Format:
Adobe Portable Document Format
Description: